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Decision Theory in Medicine
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D e c isio n  t h e o r y  is a g r o u p  o f  r ela ted  constructs  that 
seek to describe or prescribe how individuals or groups of 
people choose a course of action when faced with several 
alternatives and a variable amount of knowledge about the deter­

minants of the outcomes of those alternatives. As such, it has been 
divided into theories concerned with either individual or group 
decisions and either descriptive (how people do behave) or prescrip­
tive (how people should behave) decisions (Suppes, 1967):

Individual Group
Prescriptive Classical Economics Game Theory
(or Normative) (Statistical) Decision 

Theory
Moral Philosophy

Welfare Economics 
(including Cost- 
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Political Theory
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Decision Studies 
Learning Theory 
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Voter Behavior
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Although many health planning decisions are group normative 
decisions (especially cost-benefit analysis), applications to clinical 
medicine have been primarily in the area of individual prescriptive 
decision analysis—that is, how an individual faced with alternatives
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should make a choice (Gorry, Kassirer, Essig, et al., 1973; Lusted, 
1971; Pauker and Kassirer, 1975; 229; Schwartz, Gorry, Kassirer, et 
al., 1973; Sisson, Schoomacker, and Ross, 1976).

Another categorization of decision theory is by the amount of 
knowledge the decision maker has about the determinants of various 
outcomes for a given action. Thus, there are: 1) decisions of certain­
ty, where each alternative course of action has a single well-specified 
outcome; 2) decisions of risk or uncertainty, where each alternative 
course of action has a well-defined set of possible outcomes each 
with a probability of occurrence; and 3) decisions of ignorance, 
where each action results in a range of possible outcomes but the 
probability of occurrence of each outcome is unknown (Luce and 
Raiffa, 1957).

Examples of individual normative decisions under certainty in­
clude linear programming problems where there is a set of possible 
acts that will maximize a given index while satisfying a limiting con­
dition (feasibility criterion). An illustration of this type of problem is 
that of choosing a diet that satisfies minimum daily requirements 
and minimizes cost. Routing and scheduling problems often fall into 
this category and have great administrative importance. This class of 
problems requires: 1) acts, each of which is associated with a 
number; 2) a feasibility criterion or constraints on the acts; and 3) an 
index associated with each act that reflects a property of the act, i.e., 
cost. The problem is usually to minimize or maximize item 3 above 
while satisfying item 2.

Individual decision-making under risk involves the analysis of a 
gamble. The decision involves a choice between members of a set of 
acts whose outcomes depend on chance—the “state of nature.” The 
expected outcome value for an action is determined by the 
probability of its occurrence and its value to the decision maker. This 
value, attached to an outcome, is a measure of the decision maker’s 
preference for that outcome. Thus, each action determines a set of 
possible outcomes. Each expected outcome is the product of the 
probability of occurrence times the utility of the outcome. The solu­
tion to the problem is to find which action’s total expected outcome 
value is maximal. Examples of decisions of risk include whether to 
carry an umbrella given a probability of rain; the choice of an invest­
ment given known risks and assumed payoffs; and the choice of 
therapies given probabilities of diseases and known outcomes of 
those therapies (Winkler, 1972).
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Choices between actions with a known set of possible outcomes 
but no assignment of probabilities constitute decisions under ig­
norance. To illustrate from our previous examples, the choice of 
whether to take an umbrella without a forecast, the choice of an in­
vestment with no idea of the risks, or the choice of therapy without 
any idea of the probability of the diseases in question all constitute 
decisions under ignorance.

In most medical problems, the choice of actions, the range of 
outcomes, and some estimation (more or less precise) of the 
probabilities are available. Thus, medical decision problems are 
usually in the class of decision problems under risk.

H istorical Perspective on D ecision Theory

The historical roots of decision theory are difficult to trace, and 
probably some originate in antiquity (Savage, 1972: 91). 
Recognizable traces of decision theory concepts are found in 
medieval ethics, as, for example, the quote attributed to the Port 
Royal School by Keynes (1956: 1360): “ In order to judge of what we 
ought to do in order to obtain a good and to avoid an evil, it is 
necessary to consider not only the good and evil in themselves, but 
also the probability of their happening and not happening, and to 
regard geometrically the proportion which all these things have 
taken together.” This statement expresses the fundamental com­
ponents of a decision—that each alternative must be examined with 
regard to its value and the probability of its occurrence. Variants of 
this proposition were expressed by Leibnitz, Locke, and Butler 
(Suppes, 1967).

Other mathematical roots arose as probability theory evolved 
from the gaming tables of Monte Carlo to a real-world description. 
Two concepts generated during this evolution were crucial to the 
creation of decision theory. First, the notion of probability was ex­
tended from the narrow notion of the frequency of independent 
repetitive events, such as rolls of the dice, to a measure of the con­
fidence of the truth of a particular proposition, such as the 
probability of the occurrence of rain. The second crucial notion was 
the dissociation of price or monetary value of an object from the 
value of utility of that object for an individual. Thus, although $100 
has a fixed monetary value, its utility or value is quite different for a
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rich and a poor man. These concepts were refined and advanced by 
Bernoulli, Keynes, Ramsey and DeFinetti (Suppes, 1967).

In 1944, the concepts of value and probability were fused into a 
unified theory of decision making by Von Neumann and 
Morgenstern, and published in 1947 in their historic work, Theory o f  
Games and Economic Behavior, which laid a mathematical founda­
tion for decision theory. Since then, the field has burgeoned with 
multiple applications to policy making, sociology, economics, and 
psychology. Since Ledley and Lusted’s initial applications (1959) to 
clinical problems there has been a flurry of interest in medical deci­
sion making.

Formulation o f  the Problem

Decision problems under risk are generally formulated in either a 
matrix or a tree diagram. A decision matrix enumerates the possible 
actions on the ordinate and the states of nature (i.e., the situational 
determinants of outcomes for a given action) on the abscissa. The 
outcomes are assigned to the intersection lines and are labeled by the 
coordinates. Each outcome has a value or utility assignment and a 
probability of becoming existent. The probability assignments are 
the same for each outcome of a given state of nature, that is, all out­
comes in a row have the same probability assignment. Diagram- 
matically, this may be expressed as:

S,/P,

A, 0 l- 7 P>. Ux, 
A 2

S2/P2 S3/P 3 .

0 i- 7 p2.Ux,2 0 i-7 p 3.u ,,

. s n/p n

Ox. n
'/Pn,Ux. ..

where A Um is the set of actions, S Un is the set of states of nature, 
and Oi^m, |..n, is the set of outcomes, each with an associated 
probability and utility value.1 For example, in the umbrella problem

'In this paper the notation X|_k is used to denote the set iX„ X2, . . .  Xkl.
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the matrix would appear:

A, take umbrella 
A2 no umbrella

rain no ram
stay dry useless umbrella
get wet walk without bother

Each outcome (stay dry, get wet, etc.) would be assigned a value by 
the decision maker and a probability that would be uniform through­
out each column.

The expected utility of each action, A ^ m, is the sum of the 
products of the probability and utility assignments for all possible 
outcomes of that action. For example, for action A! the expected 
utility is:

U1, .X P 1 + UU X P 2+ U U X P S+ . . .  U,, „ X Pn.

The solution to the decision problem is to find which action’s ex­
pected utility is maximal. In the umbrella question, let us say that 
the probability of rain is 50%, and the values have been assigned as 
follows: stay dry = 1.0, get wet = 0, useless umbrella = 0.9, and 
walk without bother = 1.0. In this case, the solution to the problem 
would be:

take umbrella

no umbrella

rain no rain
0.5 0.5

stay dry useless umbrella
1.0 0.9

get wet walk without bother
0.0 1.0

The equations may be expressed as:
take umbrella = 1.0 X 0.5 + 0.9 X 0.5 = 0.95; 

no umbrella = 0.0 X 0.5 + 1.0 X 0.5 = 0.50.

Thus, take umbrella would be the preferred action.
Another useful representation of the problem is a “tree” 

diagram. The initial branches of the tree represent the possible ac­
tions, and the subsequent branches lead to the possible outcomes 
dependent on the various states of nature. Willful decisions are iden­
tified by squares at the branch points, and chance nodes are denoted 
by circles. For a decision problem involving two possible actions and 
two states of nature, the tree would appear:
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O,. l/P ,; U,. , 

Q | ,  2 / P 2; U | ,  2

O2, l/P l: U2, 1 

O2, 2 /P 2; U2, 2

In the umbrella problem the tree diagram would appear:

stay dry 1.0

useless umbrella 0.9 

get wet 0.0

walk without bother 1.0

For multiple possible actions and states of nature, the tree 
becomes very “bushy” and unwieldy. Pruning of the tree is an en­
tirely judgmental process that involves eliminating branches of either 
low probability or low utility or both (Raiffa, 1968). The tree 
diagram is very convenient for problems that involve several 
separate decisions over time such that the existence or character of 
one decision is dependent on the outcome of the previous decision.

Components

Decision theory rests on five main conceptual components: states of 
nature, actions, outcomes, probability, and utility functions. We will 
briefly explore each concept individually.

States o f  Nature

“State of nature” is the nomenclature for the space-time 
determinants of an outcome for a given action. As Luce and Raiffa
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state (1957): “the set of ‘states of nature’ is assumed to form a 
mutually exclusive and exhaustive listing of those aspects of nature 
which are relevant to this particular choice problem and about which 
the decision maker is uncertain.” Two states of the world could be 
very different, but, unless they generate or are related to two 
different outcomes for a given action, they will be labeled the same 
state of nature. This viewpoint is convenient for medical problems 
where actions are often choices of intervention and outcomes can be 
thought of as the result of interaction between the intervention and 
the state of the patient. Fortunately, one need only be able to specify 
a set of outcomes for each action and label them in a one-to-one 
fashion with hypothesized states of nature. It is not necessary to ex­
press explicitly the characteristics of the state of nature that are 
causally related to the geiieration of a given outcome from an action. 
In our umbrella problem, the states of nature are rain or no rain.

Actions and Outcomes

Actions, as we indicated in the previous section, are those options 
available to the decision maker that generate outcomes. In the um­
brella question the actions were to take the umbrella or not, and the 
outcomes were staying dry, getting wet, taking a useless umbrella, 
and walking without the bother of an umbrella. The scheme is said to 
be well specified in that it does not permit unstated actions, unknown 
outcomes, or outcomes unrelated to specific actions. Both sets of 
possible actions and outcomes are finite, complete, and invariant for 
a given decision problem. Even these modest completeness re­
quirements are beyond specification for many medical problems.

Probabilities

Although there is little explicit restriction on the probabilities 
assigned to the various states of nature, there are several implicit 
restrictions. First, the accuracy of the solution depends directly on 
the probability assignments. Second, the sum of the probabilities of 
all the outcomes for a given action must be unity. Third, the 
probability assignments reflect the confidence of the decision maker 
in the likelihood of outcomes (Good, 1959).

The accuracy of probability assignments is a major stumbling 
block of both medical and non-medical decision-making (Tversky
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and Kahneman, 1974: 1124). On the non-medical side, it has been 
shown in gambling situations that subjects consistently overestimate 
low probabilities and underestimate high probabilities. Furthermore, 
there appears to be some coloring of the probability estimates by the 
size of the stakes involved. When the stakes were of no value to the 
decision maker his probability estimates were improved, but this is 
inapplicable to most medical decision problems. The fact that people 
are not very good at estimating probabilities is one of the reasons for 
the financial success of gambling houses (Edwards, 1954; 1961).

Medical decision analyses have dealt with the problem of ac­
curacy of probability assignments in two fashions. Some studies use 
available data from clinical studies to calculate probabilities 
(McNeil and Adelstein, 1975; Sisson, Schoomacker, and Ross, 
1976). Here the inaccuracy is the abstraction from the frequency of a 
finding in a large population, to the likelihood of an event in an in­
dividual who may or may not differ from the characteristics of the 
norm of the population sampled. The other technique is the opinion 
of experts in the field (Gorry, Kassirer, Essig et al., 1973; Pauker and 
Kassirer, 1975; Schwartz, Gorry, Kassirer et al., 1973; Thornbury 
and Fryback, 1977). Some studies suggest considerable variability 
and inaccuracy among clinicians as predictors. However, investiga­
tion of the predictive ability of experienced clinicians suggests that 
their overall error rate may be quite low (King and Manegold, 1965; 
Shapiro, 1977). One technique for dealing with the variability in 
probability assignment is called “sensitivity analysis” (Pauker and 
Kassirer, 1975; Winkler, 1972). It involves calculating the expected 
utility of various outcomes using the upper and lower limits of the 
probability range. If the decision choice is preserved at both ends of 
the range of probabilities, then the analysis is not thought to depend 
on the specific probability assignments as long as they are within this 
range.

The sum of the probabilities of all outcomes of a given action 
must total 1.0. However, experimental subjects often overshoot or 
undershoot this mark when asked about multiple probabilities of 
mutually exclusive and exhaustive situations (Edwards, 1961; 
Kyburg and Smokier, 1964).

The third random requirement—that the probabilities represent 
the decision maker’s confidence in the likelihood of an outcome—is 
opposed to the view that probabilities stand for the frequency of out­
comes of random independent events. Because we are able to talk
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reasonably and intelligibly about the likelihood of non-random non- 
repetitive events (such as a weather forecast) in much the same way 
as we speak of rolls of dice, a subjective view, that probability 
represents the degree of belief in a statement, has become popular 
(Kyburg and Smokier, 1964; Menges, 1970). Thus, we can assign 
probabilities to outcomes in non-repetitive medical decisions where 
the availability of empirical evidence related to the actual frequency 
of outcomes may be lacking. This subjectivist viewpoint is very con­
troversial (Mainland, 1967).

Bayesian Inference. In a medical decision under risk, the prob­
abilities of the various diagnoses will change with the acquisition of 
new data. Thus, each test result forms a new branch of a decision 
tree, altering the probability of each prospective diagnosis. For ex­
ample, in a work-up for tuberculosis (TB), a positive tuberculin test 
certainly alters the probability of active TB. This change in prob­
ability achieved by new information is calculated as follows using 
Bayes theorem (Hall, 1967):

P(D/S) = P(S/D) P(D)
P(S/D) P(D) + P(S/D) P(D) ’

where D 
S
P(D/S)
P(S/D)

P(D)

P(D)

P(S/D)

is the disease,
is the symptom (sign or laboratory test), 
is the probability of D given S (a posteriori probability), 
is the probability of S given D (known as the likelihood 
of S given D),
is the probability of D (the a priori probability or prev­
alence of D),
is the probability of not D, i.e., the probability of the 
alternative diagnosis,
is the probability of S given the alternative diagnosis 
(not D).

For example, let us say that from the history and physical exam 
we feel a patient has a 0.5 chance of having active TB. In addition, 
we estimate that the probability of a positive tuberculin test in active 
TB is 0.95 and in the absence of active TB is 0.8. The probability of 
active TB in our patient if he has a positive tuberculin test would be:

0.95 X 0.5
0.95 X 0.5 + 0.8 X 0.5 , or 0.54 or 54%.
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Therefore, if the probability of active TB before the test was 0.5, the 
probability after a positive tuberculin test (given all the other es­
timations) would be only 0.54.

The equation may be visualized by a Venn diagram (Fig. 1). A 
lucid explanation and proof of the Bayes theorem are contained in 
Hall (Hall, 1967: 555). A commonplace medical use of Bayes 
theorem is in genetic counseling where the probability that progeny 
will be affected is calculated using Bayesian analysis from data about 
the family (McKusick, 1964: 151; Murphy and Mutalik, 1969; 
Pauker and Pauker, 1977). The implications and ramifications of 
Bayesian inference in medical situations have been investigated ex­
tensively (Cornfield, 1964: 163; Elstein, 1976; Feinstein, 1977; 
Gustafson, Kestly, Griest et al., 1976; McNeil and Adelstein, 1975; 
Woodbury, 1963).

F ig . 1. Venn diagram illustrating the probability of active TB occurring in a patient 
based on the Bayes formula. The open circle represents the disease, D; the vertically 
ruled circle represents the symptoms, S; and the overlapping portion with the horizon­
tal rules represents the probability of the disease occurring in the presence of symp­
toms, P(D/S).

Automated Diagnosis. Numerous mechanical, semi-mechanical, 
and automated systems of diagnosis have been proposed covering a 
wide range of disease categories, including thyroid disease, con­
genital heart disease, and major neurological diseases (Croft, 1972; 
Gorry and Barnett 1968; Overall and Williams, 1963; Safran, 
Tsichlis, Bluming et al., 1977; Warner, Toronto, Veasey et al., 1961). 
Although different mathematical and logical models underlie these 
attempts, there are certain unifying features (Gorry, 1970: 293;
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Kayser, 1975: 76). These include the selection of the: 1) set of signs, 
symptoms, and lab tests to be used to discriminate among disease 
categories; 2) disease categories to be discriminated among; and 3) 
set of rules that assign a patient’s data set to the disease classes. This 
process may be visualized as follows:

where SC is a symptom complex composed of possible positive and 
negative clinical data. Thus, for each possible symptom complex, 
every disease considered has a probability. The decision rule is, for a 
given symptom complex (i.e., for a given patient’s symptoms), to 
choose the disease DUn with the highest probability.

Another means of visualizing this process with those models 
that use a sequential Bayesian inference scheme is given in Fig. 2, 
which describes one patient’s combination of three positive symp­
toms (sl5 s3, s4) and two negative symptoms (s2, s5). The probability of 
each disease being considered would be recalculated with the addi­
tion of a new value for each symptom, S ^ n • For each patient with 30 
pieces of clinical data (su30) and 20 possible diseases (DU2o), there 
would be approximately 600 calculations. As the disease categories 
and patient load increase, this increased number of calculations can 
become unwieldy for even a modern computer (Croft, 1972).

Those automated diagnostic programs using Bayesian inference 
generate probabilities of each disease entity for each patient. The 
above formulation of probabilistic automated diagnostic devices 
clarifies their position within decision theory. They are individual 
normative decision devices under risk or uncertainty. That is, they 
generate a probability of a diagnosis for each patient given certain 
signs and symptoms. Since all diagnoses are pursued equally and 
ranked strictly according to their probability, we must infer that they 
are given the same value or utility. This equal ranking of diagnoses is

Diseases

D, D2
Possible SCi ! Plt 2
Symptom SC2 
Complex SC3

p1 m, n
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F i g . 2 .  Diagram illustrating the sequential steps necessary to calculate the 
probability of a disease occurring in a patient who has three positive symptoms for the 
disease (s1( sS) s4) and two negative symptoms (s2, s5), using Bayesian inference.

neither necessary nor realistic—some diagnoses are of little impor­
tance to the patient and are unaffected by medical intervention, 
while others are of great importance. This distinction can only be 
generated by some measure of utility or value for a diagnosis. 
However, automated diagnostic programs often stop at the point of 
choosing a most likely diagnosis (Croft and Machol, 1974). Other 
problems in automated diagnosis include: 1) change in symptoms 
during the course of the disease; 2) change in a priori probabilities 
with seasonal or epidemic conditions; and 3) assumption of 
statistical independence of each datum (the information of each 
datum is not contained within any other data) which will consistently 
tend to overestimate the end probability when Bayes theorem is used
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(Anderson and Boyle, 1968; Fryback, 1974). Programs utilizing 
different mathematical schemes instead of Bayesian inference have 
related problems. The progress in automated diagnosis has been 
recently reviewed (Ross, 1972).

Utility Theory

Utility (or value) assignments and determinations are the corner­
stone of decision analysis (Lindley, 1975). Although there is an in­
tuitive notion of the value of an outcome, the utility assignments 
must be quantitated in order to manipulate the variables in such a 
way as to generate comprehendible solutions to a decision problem. 
A linear scale of utilities is achieved by confronting the decision 
maker with gambles between the alternatives. Let us say that an in­
dividual is asked to express his preferences between three objects, A, 
B, and C, and at the outset he is able to state his preference of A to 
B, B to C, and A to C. To quantitate his utility scale he is offered a 
coin flip lottery between B for certain versus a gamble between A 
and C. He is asked what are the odds of getting A or C such that he 
would consider it a fair coin flip against B. Let us say that he 
responds that if you could guarantee him a 2/3 chance of getting A 
versus a 1 /3 chance of getting C, then this would be a fair equivalent 
of B for sure. We arbitrarily assign the least preferred alternative C 
the value 0, and the most preferred A, 1.0; B would therefore be 2/3. 
If one continues this lottery process for all the alternatives available, 
a linear scale of utilities can be generated. In the umbrella problem, 
the decision maker (to obtain the previously mentioned utilities) 
would have had to claim that carrying an umbrella in the rain was 
equally desirable to not carrying an umbrella when it did not rain, 
and that carrying an umbrella when it did not rain was equivalent to 
a 90% chance of one of these against a 10% chance of getting wet.

These utility functions generate a rather peculiar scale that is 
cardinal in the sense of assigning numbers to the various alternatives, 
but it is not metric (like money) in the sense that the numbers do not 
represent true relative preferences. The most useful analogy is 
between a utility scale and a temperature scale. Although numbers 
are assigned to different degrees of temperature, there is no fixed end 
point nor a fixed zero point. A temperature scale will give us the
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relative positions of various temperatures, but they are not com­
parable in the same fashion as a metric scale (i.e., it makes no sense 
to speak of 80° F as twice as hot as 40° F when an alternative scale, 
centigrade, yields numbers 27°C and 4.5°C) (Swalm, 1966). Another 
scale similar to utility is the calendar years.

Perhaps the clearest application of the lottery procedure to 
determine utilities is the generation of a utility scale for money. In 
this case, a person is asked to choose between X dollars for certain 
versus a gamble between Y and Z dollars. In most circumstances, 
people will choose a sum for certain that is lower than the dollar sum 
times the probabilities in the gamble. For example, if dollars equaled 
utility, $100 would be the fair equivalent of a 50/50 bet between $200 
and $0.; however, most people would take the $100 for certain. This 
indicates that $100 has more utility for them than the 50/50 gamble 
between $200 and $0. A scale of utility created for money is shown in 
Fig. 3.

50 100 150 200
DOLLARS

F ig . 3. Scale of utility created to illustrate the utility placed on money by people 
applying the lottery procedure. Left: Curve of a conservative non-risk-taking in­
dividual. Right: Curve of a risk-taking gambler.

The shape of one’s utility curve for any set of alternatives is very 
personal and may change with time. Thus, even similarly ranked ex­
ecutives in the same company, when asked to make monetary 
decisions in the company’s name, had dramatically different utility 
curves for money—however, the curves were predominantly conser­
vative (Swalm, 1966).
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Utility theory has been axiomatized by Luce and Raiffa (1957) 
as follows:

i. Any two alternatives shall be comparable, i.e., given any two, the 
subject will prefer one to the other or he will be indifferent between 
them.

ii. Both the preference and indifference relations for lotteries are tran­
sitive, i.e., given any three lotteries A, B, and C, if he prefers A to B 
and B to C then he prefers A to C; and if he is indifferent between A 
and B and between B and C, then he is indifferent between A and C.

iii. In case a lottery has as one of its alternatives (prizes) another 
lottery, then the first lottery is decomposable into the more basic 
alternatives through the use of the probability calculus.

iv. If two lotteries are indifferent to the subject, then they are inter­
changeable as alternatives in any compound lottery.

v. If two lotteries involve the same two alternatives, then the one in 
which the more preferred alternative has a higher probability of oc­
curring is preferred.

vi. If A is preferred to B and B to C, then there exists a lottery in­
volving A and C (with appropriate probabilities) which is indifferent 
to B.

One advantage of the axiomatic method is that it explicitly lays 
out the foundations of a theory so that it can be easily critiqued. Ax­
ioms i, ii, iv, and v seem intuitively reasonable. Axiom iii, after some 
reflection, seems reasonable, but axiom vi is somewhat controver­
sial. The claim in axiom vi is that all outcomes can be rated with 
respect to each other. Is this truly the case? Medical decisions often 
deal with intangibles such as life, death, pain, and relief that seem to 
defy comparison with more mundane matters such as money, time 
lost from work, temporary functional impairment, etc. In the 
business world where decision theory has been applied more exten­
sively, intangibles such as goodwill and community standing have 
been measured (Swalm, 1966). However, it is not clear that the in­
tangibles involved in medical problems can be rated with respect to 
each other. A further claim of axiom vi is that one’s betting behavior 
in a gamble or lottery truly reflects one’s preferences. Is this always 
the case?

These axioms generate a series of utility functions that assign 
numbers to alternatives in a lottery, and those numbers reflect the 
decision maker’s preferences in that lottery. If numerous alternatives 
are subjected to this lottery type expression of preference, a linear
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utility scale is derived. Thus, in most medical decisions this amounts 
to ranking preferences for diagnoses or therapies (in terms of 
benignity, treatability, cost, pain, etc.)

Problems with Utility Assignments. From the preceding discus­
sion, several problems with utility assignments appear. The first and 
most obvious is that monetary value cannot be substituted for utility 
assignments. Although we will return to this later in a discussion of 
benefit-cost analysis, it should be clear that a substitution of 
monetary value for utility in a decision problem presumes that 
everyone has the same utility curve for money. This is not the case, 
as we saw in the last section. Although no medical decision analysis 
has expressed utilities in dollar terms, the choice of utility assign­
ments often suggests a monetary equivalent (Gorry, Kassirer, Essig 
et al., 1973; Schwartz, 1973).

The second problem in utility assignment is designating utility 
functions for various alternatives without the lottery procedure. This 
is technically not legitimate because of person-to-person variability. 
However, arbitrary utility assignments are routinely reported in the 
literature because individual lotteries are unfeasible (Gorry, 
Kassirer, Essig et al., 1973; Schwartz, 1973). A surgical scar, the 
cost of an operation, pain, etc., all have personal values. Utility func­
tions for one individual cannot be carried over to another individual 
or group. The fact that each utility function for each alternative for 
each person would have to be recalculated each time a decision was 
made seems to severely limit the technical feasibility of utilizing 
decision theory for individual patients.

Kassirer (1976) points out that some of these criticisms, 
although correct, miss the point that these functions will often be the 
same from person to person and from one point in time to another. 
Thus, with the understanding that the analysis is not rigorous but 
considerably better than informal clinical reasoning, we utilize this 
model to help us sort the issues involved in a complex clinical 
decision.

One issue we mentioned earlier is that of intangibles. How does 
one rate his preference with regard to life, death, and other abstract 
notions? One answer is that we do it all the time by risking death 
when we decide to go mountain climbing, kayaking, or even taking a 
drive in a car. In medical decisions, substantial mortality and mor­
bidity may be present in one or all of the alternative therapies. This
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affects the utility of those therapies. The manner in which these fac­
tors go into generating an individual’s utility for an alternative is still 
opaque and is part of the problem of multi-attribute utilities (Keeney 
and Raiffa, 1976). That is, a linear utility scale may fail to capture 
all the subtle complexities and tangled web of attributes that each 
alternative has in a clinical decision problem (Hausner, 1954: 167; 
Huber, 1974; Keeney, 1972). Clearly, viewing medical options 
simply in terms of life and death is inadequate (Barnoon and Wolfe, 
1972). We need a utility measure that can integrate diverse attributes 
of therapeutic alternatives such as cost, morbidity, mortality, ex­
pected compliance, treatability, discomfort, loss of self-image, etc. 
Although there are mathematical tools for manipulating multi­
dimensional utilities, only infrequently has this been shown to have 
practical application (Gardiner and Edwards, 1975: 2; Ginsberg, 
1971: 42).

The problem of interpersonal comparisons of utility has not 
been solved satisfactorily from a theoretic standpoint, and certain 
aspects are important for medical decisions. Whenever physicians 
make clinical decisions they integrate their own value system with 
the patient’s value system to generate preferences for alternative 
diagnoses or therapies. For example, when a physician recommends 
an operation to a patient, he has assessed the patient’s value of pain 
and integrated it into his decision. When there is any question about 
this integration, the patient may express his doubt in terms like: 
“Doctor, I don’t want this operation if there is a chance I might die.” 
In most cases a discussion would result in a satisfactory mutual un­
derstanding of the relative benefits and detriments of each course of 
action. The presumption in medical decisions is that the decision is 
made with an interpersonally accurate utility function until conflict 
arises. Claims that the patient is being experimented upon are con­
flicts of this nature, i.e., the patient claims that the doctor is not act­
ing in his behalf, and that the doctor’s utility assignments for the 
alternatives involve weighing them from a scientific or a broad social 
viewpoint and not from the patient’s viewpoint. It is clear that either 
using the patient’s or the physician’s utility assignments alone is in­
adequate.

Basically, the physician is in the position of a benevolent dic­
tator. He generates decisions in the patient’s behalf with some ap­
preciation of the patient’s value system. The ability to assess and 
integrate patients’ values is one of the subtle attributes of a good
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clinician. There is no formula that will act as a guide to the integra­
tion of the patient’s values into the decision-making process. 
However, one must look for key indicators, primarily from the 
patient’s past experience, that would lead him to believe the patient’s 
values are the same or different than his. Of course, the greater the 
cultural gap between patient and physician, the more difficult this 
appreciation of values. In the end, when conflict is unresolvable, the 
patient has clear-cut veto power over every decision—this is inherent 
in patients’ rights.

Decision Criteria Under Risk

For decision problems under risk, there is one accepted decision 
criterion—choosing the alternative that maximizes expected utility. 
That is, for each action there is a set of possible outcomes. Each out­
come is associated with a probability of occurrence and, as we saw 
earlier, a value assignment or utility function. The expected utility 
for each outcome is the probability multiplied by the utility. The ex­
pected utility for each act is the sum of the expected utilities for all 
the possible outcomes of the action. The decision is generated by 
comparing the expected utilities for each act or alternative and 
choosing the maximal expected utility of those alternatives—a Bayes 
strategy. (See the umbrella problem, pp. 365-367.)

This principle may be sound as a prescription, but it is not an 
accurate description of decision behavior. A problem with max­
imized expected utility as a description of behavior, called the “sure 
thing” principle, was pointed out by Keynes (1956:1360) and Savage 
(1972:91). A medical variation on the “sure thing” principle is that a 
patient faced with the choice of living with an illness with which he is 
familiar versus opting for a medical intervention may opt to remain 
with the condition because of fear of the unknown. The option that is 
“for sure” is chosen even though it has lower expected utility. The 
patient who does this may be accused of being irrational, and he is, if 
the criterion of maximized expected utility is the criterion of 
rationality. Maximized expected utility is the decision criterion that 
embraces what we consider rational decision making, but it fails to 
describe the broad range of both rational and irrational human deci­
sion making behavior. This is a criticism of human decision-making 
rather than decision theory.
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Individual Normative Decision Analyses Under Risk

A wide range of individual medical problems has been subjected to 
rigorous decision analysis, including coronary artery bypass surgery, 
right lower quadrant abdominal pain, radical neck dissection for 
oropharyngeal cancer, streptococcal sore throat therapy, post-myo- 
cardial-infarction prophylactic anticoagulation, swine flu inoculation, 
and the screening test in general (Anderson, Lierena, Davidson 
et al., 1976; Bay, Flatham, and Nestman, 1976; Bunch and An­
drew, 1971; Emerson, 1975; Emerson, Teather, and Handley, 1974; 
Forst, 1971; Giauque, 1972; Hensche and Flehinger, 1967; MacRae, 
1976; Pauker, 1976; Pauker and Pauker, 1977; Pliskin, 1975; Rubel, 
1967; Safran, Tsichlis, Bluming et al., 1977; Schoenbaum, McNeil, 
and Kavet, 1976; Sisson, Schoomacker, and Ross, 1976; Teather, 
Emerson, and Wandley, 1974; Tompkins, Burnes, and Cable, 1977). 
The only apparent limitation on the range of these analyses is the 
time and effort involved with the increasing complexity of the 
problems undertaken. The decision analyses discussed in this section 
are management problems. Some are pure therapeutic decisions with 
known illnesses, such as a mid-shaft fracture, and some are com­
bined diagnostic-therapeutic dilemmas. These combined analyses 
are necessarily more complex, but they open options to the decision 
maker such as halting a diagnostic evaluation to initiate a thera­
peutic trial. The staggering complexity of these analyses requires 
simplifying assumptions even in the automated programs (Betaque 
and Gorry, 1971; Ginsberg and Offendsend, 1968). Yet many of the 
analyses yield significant results with pencil-and-paper-type 
calculations (Hensche and Flehinger, 1967). The simplifying 
assumptions can occasionally lead to eliminating important options 
such as the possibility of an unsuspected diagnosis in an early 
analysis by Ginsberg (1971) or the introduction of a new and less 
risky diagnostic test, the gallium scan, as a replacement for the 
lymphangiogram test being analyzed (Safran, Desforges, Tsichlis et 
al., 1977). (This test was added in another publication (Safran, 
Tsichlis, Bluming et al., 1977).) Decision analyses are likely to 
eliminate important options when either the problem is ambiguous 
or the technology used to evaluate the problem is rapidly evolving.

From a theoretic standpoint, most of these analyses are 
relatively similar. The probability estimates are arrived at in one of
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two ways. Most commonly, they are the subjective estimates of an 
expert in the field (Pliskin, 1975). Less commonly they are frequency 
data obtained from the literature (Kassirer, 1976; Pauker, 1976). 
Rarely, probability estimates incorporate frequency data ac­
cumulated expressly for the purpose of the study (Emerson, 1975). 
For a diagnostic problem we may assume that the prior probabilities 
(before any tests were performed) are equal or that they reflect the 
prevalence of the disease in the population at risk (Hockstra and 
Miller, 1976). Some programs were designed to update the 
probability estimates as data accumulated (Safran, Tsichlis, Blum- 
ing et al., 1977). Other programs had cut-off probabilities beyond 
which the diagnoses were not pursued (Gorry, Kassirer, Essig et al., 
1973). In recent analyses, the trend has been to subject the 
probability estimates to “sensitivity analysis,” which involves 
calculating the expected utility for all the alternative courses of ac­
tion using the upper and lower limits of the probability range for 
each of the outcomes (Kassirer, 1976; Pauker and Kassirer, 1975). 
Usually the probability estimates and utility estimates are varied 
separately during a sensitivity analysis. Conceivably, both estimates 
could be in error simultaneously, but this is rarely considered.

The utility assignments were obtained by a wider range of 
procedures than the probability estimates. In some of the less 
sophisticated analyses the utility assignments were the author’s ar­
bitrary value estimations (Hensche and Flehinger, 1967; Sisson, 
Schoomacker, and Ross, 1976). More rigorous analyses utilized the 
lottery process described in an earlier section (Betaque and Gorry, 
1971; Schwartz, Gorry, Kassirer et al., 1973; Thornbury and 
Fryback, 1976). Most of the utility scale determinations were per­
formed with the same group of expert physicians who generated the 
probability estimates. In the automated analyses it is difficult to en­
vision a simple way of incorporating a patient’s utility scale into the 
program. In a few of the recent nonautomated analyses, patients’ 
utility scales for some of the major attributes of the alternatives were 
assessed (i . e pain and survival) and incorporated into the analysis 
(Pliskin and Beck, 1976). Pauker (1976) and Pauker and Pauker 
(1977) explain in some detail the application of the lottery process to 
an individual patient.

Certain studies, apparently realizing the difficulty in trying to 
establish a meaningful interpersonal utility scale, left the expected 
value of the various alternatives in “raw form,” e.g., expected mor­
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tality (Emerson, 1975; Pauker and Kassirer, 1975). One analysis left 
all the value measurements (expected hospital days, expected days 
off work, expected number of amputations, and expected number of 
deaths) with the corresponding therapeutic options in table form, 
allowing decision makers the luxury of choosing the option that 
matched their value systems (Bunch and Andrew, 1971). This is only 
possible for a small number of options with a relatively few tangible 
attributes.

Another approach is to use the therapeutic threshold, which in­
dicates that a certain action should be taken if the a priori 
probability of an alternative exceeds a certain threshold level 
(Pauker and Kassirer, 1975; Safran, Desforges, Tsichlisetal., 1977). 
These methods and other novel solutions to the utility problem may 
overcome its present limitations. A thorough investigation of the 
utility problem including the solution of a problem using a multi­
attribute utility function from several perspectives (the doctor, the 
patient, and the public health official) may be found in Giauque 
(1972) or Ginsberg (1971). Because of this complexity, the analyses 
are quite lengthy.

When these analyses are field-tested either against the judgment 
of experts or against the results of a trial (e . g looking for the ex­
pected mortality under certain circumstances), they seem to perform 
well (Emerson, 1975; Gorry, Kassirer, Essig et al., 1973).

Experimental D ecision Theory

Experimental decision theory attempts to examine, among other 
things, whether decision theory is a good descriptive model of 
behavior. Experiments seeking to predict an individual’s assess­
ments of probabilities or their ability to generate a linear utility scale 
for a series of alternatives have been performed since the 1950s. In 
general, they demonstrate that individuals have limitations in both 
areas (Edwards, 1954; 1961; Suppes, Davidson and Siegal, 1957). 
The subjective probability estimates of experts are reliable when the 
utilities are fixed (as in a pure diagnostic problem) and when the 
probability estimates are being constantly modified by feedback in­
formation in the form of the patients’ eventual outcomes (de Dom- 
bal, 1975; Salamon, Bernadet, Samson et al., 1976). When the 
probabilities are fixed but the utilities are variable, the experts seem
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less reliable. Their actions seem to betray an inconsistency in the 
values that they attached to the determinants of therapeutic out­
comes (Aitchison, Moore, West et al., 1973; Taylor, Aitchison, 
Parker et al., 1975). In spite of this variability, if there are no 
mitigating circumstances, one can reason backward from the 
physician’s choice in a decision problem to his approximate utility 
assignments for the alternatives (Aitchison, 1970). Thus, although 
decision theory is not a very accurate descriptive model, it can be a 
valuable tool with which to empirically analyze medical decisions 
(Taylor, Aitchison, and McGirr, 1971).

Proving Decision Theory

Decision analyses reflect the opinions of experts. However, this only 
lends a certain amount of credence to the claim that the results of 
decision analyses are the “best” decisions (Betaque and Gorry, 1971; 
Gorry, Kassirer, Essig et al., 1973). If one requires actual proof that 
investing time, effort, and expertise in decision analysis will pay off 
in terms of better outcomes of one’s decisions, then there is a great 
paucity of data to support this contention. In fact, athough most 
observers agree that a poor analysis can be misleading, there is no 
methodology, save common sense, that allows one to distinguish ac­
curate from inaccurate analyses. In spite of the lack of proof, many 
observers (especially in industry) feel that any analysis is superior to 
the alternative—ad hoc decision making—because at least it makes 
the presumptions of the decision explicit.

A more limited goal of showing whether the use of decision 
analysis improved decisions, in terms of previously stated utilities 
rather than patient outcomes, was attempted by Fryback (1974). The 
decision making clearly improved, but it was not shown that patient 
outcomes also improved.

The problem of what to do with counterintuitive results has not 
been satisfactorily solved. Giauque’s conclusion (1972) that all 
members of a family of a patient with a sore throat should have their 
throats cultured even though the patient’s culture is negative seems 
unwarranted, just as screening programs for asymptomatic strep 
carriers outside of military populations seem unwarranted. Is the 
analysis wrong or are our intuitions incorrect?
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G am e Theory

Game theory is a subdivision of decision theory which attempts to 
optimize an action or strategy for two or more decison makers who 
may either cooperate with each other or conflict with each other 
(Luce and Raiffa, 1957). An interesting approach to the problem of 
developing a meaningful interpersonal utility measure was in­
vestigated by Hockstra and Miller (1976). They viewed sequential 
medical diagnostic decisions in terms of a two-person, doctor-and- 
patient, cooperative game. The patient’s utility was to limit cost ex­
penditures, and the doctor’s utility was to achieve certainty of 
diagnosis. The optimal strategy was defined as the Nash equilibrium, 
which essentially states that, of all the tests that generate informa­
tion (i.e., increase the probability of diagnosis), the test that 
minimizes cost should be chosen. The “ceasing testing” rule is that, 
once a point is reached where any further test yields no increased in­
formation, the diagnostic process is terminated.

Unfortunately, this procedure does not solve the fundamental 
problem of interpersonal utility comparisons. In reality, the doctor 
and patient have virtually the same set of objectives with regard to a 
given medical problem. In general, they both want to become more 
certain of the diagnosis with the least expense, time, and pain. It is 
not the doctor’s need for certainty versus the patient’s desire to 
minimize expenses, but more accurately a situation that demands 
bargaining between the doctor and patient to arrive at a joint, agreed 
upon, value for each of the aspects of the various alternatives. 
Furthermore, one does not ordinarily utilize every test that yields in­
formation, but ceases testing at some arbitrary point when the 
diagnosis is considered “proven.”

D ecision-M aking Under Ignorance and Statistical 
Inference

If one can specify all the alternative actions as well as all of their 
respective outcomes for a given decision problem, but is totally ig­
norant of the probabilities of these outcomes, the decision problem is 
under ignorance. Examples given earlier included the decision 
whether to take an umbrella or not without a forecast, and the deci­
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sion to initiate therapy or not without any idea of the likelihood of 
the alternative diagnoses. These may be visualized in a matrix:

States of Nature
S, S2 S3 . . . S„

Actions Ai ° l ‘/Ui. t
A2 ° 2 ‘/U i .
A 3 ° 3,7 u s, !

Am 0m-7Um. 1 O"1- “/IT/ m, n

Thus, the decision must be made on the basis of the relative 
values of the outcomes, not on their chance of occurring. Part of the 
problem with this notion lies in the concept of complete ignorance. 
That is, it appears as though simply being able to enumerate the 
possible outcomes is an admission of some information concerning 
the relative probabilities of these outcomes as the most probable sub­
set of all possible outcomes (Luce and Raiffa, 1957). A thorough dis­
cussion of “complete ignorance” is beyond the scope of this paper.

To handle decisions of complete ignorance, several decision 
rules have been proposed. Of these, the best known is the Maximin 
Criterion of Von Neumann (Von Neumann and Morgenstern, 1947). 
An index is created for each act. The index is the numerical value of 
its smallest utility assignment for any of its possible outcomes. The 
maximin decision rule is to choose the action whose index is the 
largest. It is clear that this decision rule is extremely conservative. 
Witness the following decision problem:

Si s 2
A, 0 100
A2 1 1

The maximin criterion dictates the counterintuitive choice of 
A2. Other proposed decision criteria include maximizing the average
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utility assignment, the Minimax Risk criterion, and the Pessimism- 
Optimism Index of Hurwicz. None of these criteria is wholly 
satisfactory, in that one can create examples for which any of these 
criteria generate counterintuitive results.

Classical statistical inference hypothesis testing is an example of 
decision making under ignorance, as follows:

no. with disease no. without disease
positive true positive false positive

test type II or /? error
negative false negative true negative

test type I or a error

This is a two-state (disease versus normal), two-action (positive 
test versus negative test) decision problem. The problem is that, if 
one of these errors is decreased by a decision rule, the other is in­
variably increased.

The classical Neymann-Pearson decision solution is to accept a 
hypothesis if a is <  0.05 or 0.01. This arbitrary rule, like the max- 
imin criterion, clearly fails under certain circumstances. When the 
cost or disutility of missing a diseased patient is high, such as in 
phenylketonuria screening, a false-negative rate of less than 0.01 is 
necessitated even at the expense of a 95% false-positive rate (Galen 
and Gambino, 1975). The high false-positive rate may be expressed 
as low predictive accuracy of a positive test TP/TP + FP (Vecchio, 
1966). Conversely, if a false-positive is associated with a significant 
disutility or “cost” and a marginal utility, one would like to 
minimize type II or (3 errors. For example, the diagnoses of 
schizophrenia and alcoholism have significant social detriments and 
may have little therapeutic importance. If the disutility of an FP or 
FN is substantial, the Neymann-Pearson decision may be in­
applicable. A thorough discussion of the relationship between 
classical statistical inference and Bayesian decision theory is 
available in many statistics textbooks (Chernoff and Moses, 1959; 
Hamburg, 1970).
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Many of the unwritten laws in medicine (decision rules of ig­
norance) have analogies in the legal system (Scheff, 1963). Just as 
the law uses the rule, “Better a thousand guilty men go free than one 
innocent man convicted,” medicine uses the maxim, “When in 
doubt, diagnose illness.” Both rules are guides to minimizing type I 
errors.

innocent

Verdict

guilty

Reality
innocent guilty

correct judgment guilty man freed 
type II or /? error

innocent man convicted 
type I or a error

correct judgment

ill
Diagnosis 

not ill

Reality
ill not ill

correct false diagnosis

false bill of health correct

Both society and medical training promote the minimization of type 
I errors, in the belief that it is worse to ignore a disease that is pres­
ent than to diagnose a well person as ill. Scheff points out that cer­
tain conditions might require minimizing the false diagnoses, even at 
the expense of increasing false bills of health. There is a need to es­
tablish exactly what conditions benefit by early intervention such 
that we do minimize false-negative (« ) in these groups. Other dis­
eases, such as benign self-limited conditions or chronic untreatable 
disorders, would require less hurried investigation.

Another way of visualizing the a and /3 error relationship is in 
terms of a Receiver Operating Characteristic (ROC) curve (Lusted,
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1968; 1971; Lusted, 1968), as shown in Fig. 4. Once a ROC curve is 
obtained for a signal detector (i.e., radiologist), several things can be 
done with it. One can look at the actual outcomes of false-positive 
and false-negative readings and see if the degree of “conservatism” is 
warranted. If the patient outcomes do not appear to warrant this 
degree of conservatism, it has been shown that one can change the 
ROC characteristics willfully by reading the X-rays with a liberal or 
conservative attitude (Garland, 1959).

Another use of ROC curves is in training personnel. A 
specialist’s ROC characteristics could be measured and used as a 
goal for a trainee. A third use is in evaluating new technology in 
terms of decreased false-positive or false-negative interpretations.
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Fig . 4. Receiver Operating Characteristic (ROC) curve. A reciprocal relation is 
demonstrated between the percentage of true-positive and false-positive diagnoses. 
Hypothetical population density curves that generated the ROC curve are shown in 
the upper right diagram. The a and p areas represent false-negative and false­
positive diagnoses. (Adapted from Lusted, L. B. 1971. Decision-Making Studies in 
Patient Management. The New England Journal o f  Medicine 284(8): 416.)
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Cost-Benefit Analysis

Cost-benefit analysis is part of the broad field of welfare economics. 
In spite of its development within the framework of public finance, it 
may be considered a subset of decision theory (Prest and Turvey, 
1965). Within the domain of decision theory it forms one of several 
normative-group decision theories, and usually constitutes decision 
making under certainty. It generally enumerates in monetary terms 
costs and benefits of a willful action, with the decision rule that the 
alternative with the highest benefit to cost ratio should be adopted.

This technique has been applied to the health-related fields in 
increasing frequency since the early 1960s and has resulted in studies 
of heart disease, cancer, stroke, arthritis, venereal disease control, 
mental illness, and, more recently, to the stool guaiac examination 
(Fein, 1958; Klarman, 1964: 693; Klarman, 1965: 367; Neuhauser 
and Lewicki, 1976; Neuhauser and Lewicki, 1975; Department of 
Health, Education, and Welfare, 1966; Rice, 1962).

Most of the work in cost-benefit analysis has been performed on 
a public policy level because money is an acceptable, well- 
understood value measure, and it is the basis on which government 
agencies often make policy decisions. Even in public policy, however, 
it is difficult to assess the monetary value of public goods such as 
clean air (Pliskin and Taylor, 1977). To avoid this trade-off of in­
tangibles such as clean air or lives for dollars, implied by the 
analysis, a simple method may be used to compare different 
strategies with similar outcomes in terms of their cost-effectiveness. 
This may be expressed in a monetary or a non-monetary standard, 
e.g., quality-adjusted years of life (Zeckhauser, 1975).

If one chooses monetary value for the utility measure, there are 
obvious moral and ethical problems. For example, although a stool 
guaiac examination costs about $1, when applied as a public policy 
to six sequential stool guaiac examinations as a screen for silent 
colorectal cancer, the marginal cost of the sixth guaiac per cancer 
found is $47,107,214.00 (Neuhauser and Lewicki, 1975). Clearly, 
this is unlikely to be a cost-effective public policy, but should it for 
that reason be denied to an individual who requests six guaiac ex­
ams? The transition from a prescription for a public policy program 
to an individual decision is difficult. Cost-benefit analysis has been 
performed in the individual decision analysis of a space-occupying 
lesion in the kidney on intravenous pyelogram and in the prevention

Decision Theory in Medicine
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of acute rheumatic fever (Thornbury and Fryback, 1976; Tompkins, 
Burnes and Cable, 1977). Cost-benefit analyses of individual deci­
sion problems are legitimate when the major therapeutic alternatives 
differ primarily in costs rather than the more highly subjective 
qualities of pain, disability, etc.

The absence of probabilities arises from the nature of the 
analyses. That is, they are generally of existant problems or policies, 
or future policies with assumed guaranteed outcomes. Of course, this 
need not be so, and a recent analysis of the colorectal cancer screen­
ing program did use probabilities extensively (Neuhauser and 
Lewicki, 1975: 226).

The choice of money as an interpersonal utility or value stan­
dard carries certain advantages and disadvantages. Michalos points 
out (1970: 67) that maximized expected utility, at least in the Von 
Neumann-Morgenstern conception of generating numerical utility 
functions by means of multiple gambles, is thoroughly impractical. 
He argues for monetary value over maximized expected utilities in 
situations such as hypothesis acceptance by groups where other stan­
dards of utility are lacking. But whose valuation do we use for in­
tangibles such as a year of life—the person’s expected income? his 
loss to society? insurance policy standards? or what an individual 
would be willing to spend to buy a year of life? (Acton, 1975; Schell- 
ing 1968: 217; Tompkins, Burnes and Cable, 1977).

Other cardinal scales of utility instead of money are possible 
and include disease impact analysis (i.e., theoretic preventable im­
pairment versus actual prevented impairment) and expected length 
of useful life (i.e., quality-adjusted life years) (Weinstein and Stason, 
1976; Williamson, Alexander, and Miller, 1968). However, it is un­
clear that an individual can readily convert pain or disfigurement 
into years of life or vice versa.

In conclusion, cost-benefit analysis, as it stands, appears ap­
propriate in evaluating existing public policy programs and 
problems. With the modification of adding probabilities, it appears 
valid to evaluate proposed programs with outcomes of less than cer­
tain probability, and to evaluate the relatively rare individual 
decisions where the monetary outcomes are not seveicly distorted by 
unmeasurable intangibles. Where disability is a major outcome, the 
addition of a measure of useful years of life may prove to be an im­
portant utility measure. Lastly, in establishing priorities for program 
innovation, disease impact analysis may be helpful.
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Flow Charts

Flow charts are explicit strategies for solving a problem. The 
problem can be as mundane as the acquisition of raw data in a 
routine history or as complex as the schematic representation of the 
evaluation of a clinical finding. The branches are created by ad­
ditional data. For example, a flow chart evaluating a pleural effusion 
might have branches representing exudative fluid versus transudative 
fluid or perhaps unilateral versus bilateral. In most circumstances, 
the branches are created by the response to a “Yes/No” question or 
an “Either/Or” condition, but this is not necessary. For example, 
responses to the initial question in a flow chart on hives include 
“No,” “Yes,” “Don’t know,” and “Don’t understand.” Alter­
natively, a flow chart algorithm may be presented as a decision table 
(Holland, 1975). In spite of the name “decision table” or its 
representation as a tree diagram, flow charts are only distant 
relatives of decision analysis.

In terms of a decision theory classification, flow charts are, in 
general, sequential decision problems where neither utilities nor 
probabilities are specified. The only aspects of the problem that are 
specified are the various decision points and the outcomes. The out­
comes are often not wholly specified but simply that the choice 
(which may or may not be a chance phenomenon) of the next deci­
sion problem rests with the outcome of the previous one. For exam­
ple, in evaluating chest pain the physician may be instructed to ask 
whether it increases with inspiration.

State
Yes No

Action increases Go to Question 2 Go to Question 3
with inspiration

Implicit in this format is the claim that any chest pain that increases 
with inspiration increases the probability of certain diagnostic en­
tities such as pleurisy or pulmonary embolus. The Question 2 branch 
would pursue these diagnostic entities.

In a decision analysis, we would like to know both the value and 
probability of the outcomes of our actions whether it is performing a 
lab test, buying stock, or stretching out on the sofa. In the flow chart, 
we often want a format that will show us how to assess the state some 
person or object is already in. What we want to know is what label to
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attach to it or what to do about it. By a series of answers to 
questions, we will eventually land up with a diagnosis or a 
therapeutic instruction.

Flow charts are generated by careful clinical observation and in­
trospection. They are useful descriptive and teaching devices, but 
they do not address the exact same issues as decision analysis (Fein- 
stein, 1974). For example, a flow chart concerning suspected 
pulmonary embolism may require the acquisition of certain clinical 
data such as whether the patient had chest pain, shortness of breath, 
cough, hemoptysis, etc. On the basis of these and other data, the 
chart might suggest a lung scan. On the other hand, a decision 
analysis of the same situation might assume that the data has been 
acquired and might seek to evaluate the relative benefit of 
proceeding with a lung scan or instituting therapy without this ad­
ditional datum. Similarly, a flow chart may illustrate the clinical 
evaluation of a sore throat whereas a decision analysis might in­
vestigate the role of the throat culture in the management of patients 
with a sore throat. Clearly, flow charts are a codification of accepted 
medical practice, whereas decision analyses investigate or evaluate 
these practices.

Conclusions

Decision theory is a broad field with numerous facets, even when 
restricted to medicine. It has accepted application to public health 
policy in the form of cost-benefit analysis, and in research endeavors 
in the form of statistical inference. As an empirical tool it has helped 
sort out some of the logic of our clinical behavior (Moore, 1973; 
Taylor, 1971). In the form of linear programming, it is used in ad­
ministration problem solving.

It remains to be seen what impact decision analysis can have on 
clinical medicine. Of the applications to clinical medicine, 
automated diagnoses have had the most extensive experience. They 
are clearly feasible, albeit difficult, time-consuming, and marginally 
superior to current practices. A most problematic area is manage­
ment decision analysis under risk. Certain of these analyses are 
notable successes, but they remain relatively isolated. The reasons 
are many. There are pragmatic limitations of time, effort, cost, and 
expertise necessary to perform an analysis that may generate little
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tangible benefit. On the theoretic side, most of the problems with 
probability estimates have been satisfactorily resolved; however, the 
utility problems still plague most analyses (Ransohoff and Feinstein, 
1976). When the decision is between alternatives that differ in tangi­
ble attributes, such as mortality or significant morbidity, the deci­
sion often can be made using these indices as cardinal utility scales. 
When the alternatives differ in intangible or multiple attributes, 
there does not seem to be any wholly satisfactory solution currently. 
It is clear that the utility measurements should thoroughly incor­
porate the patient’s values; but this is often quite difficult, especially 
with decisions involving life, death, and pain.

In our search to achieve quantitative guides for clinical 
behavior, we must keep in mind that every formalism is a model. The 
primary tasks of models are to describe or prescribe accurately 
(Vaupel, 1973). Although decision theory is suitable for both 
endeavors, its limitations make it unlikely that it will become a 
calculus of clinical medicine with or without the aid of a computer 
(Pauker, Gorry, Kassirer et al., 1976). In spite of these limitations, it 
will surely play a role in investigating current clinical practice, 
teaching medical students from a task-oriented viewpoint, and shap­
ing health care policy (Taylor, 1976). Decision theory’s true role in 
medicine will lie between the naive optimism that characterized it as 
a “new Rosetta stone” (Hall, 1967) and the unmitigated pessimism 
that characterized it as a “computerized Ouija board” (Ransohoff 
and Feinstein, 1976).
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