
ON THE PERSON YEARS CONCEPT 
IN EPIDEM IOLOGY AND DEM OGRAPH Y

MINDEL C. SH EPS

The need to estimate a risk of some kind in a sample of indi­
viduals who are followed for a period of time is common to many 
different kinds of studies. This paper will report an investigation into 
the behavior, under defined conditions, of the “ exposure time” or 
“person years”  indices that are often used to estimate risks in such 
studies. One example, the Pearl Index1, has been common in studies 
of the effectiveness of contraceptives.2 Analogous indices are not 
infrequently calculated in therapeutic and epidemiological investi­
gations. It will be the contention of this paper that the use of this 
type of index should be confined to rather limited circumstances. 
In particular, if the individuals in a sample cannot be assumed to 
experience constant and equal risks, this class of indices does not 
constitute an appropriate measure.

The particular form of the Pearl Index to be discussed here, the 
conception rate, may be defined as the number of women in a group 
who conceive for the first time during a period of observation, di­
vided by the total number of months during which they are exposed 
to the risk of pregnancy.3 Similarly, in some medical follow-up 
studies, the number of years during which each patient is observed 
are added together and the observations expressed as the number 
of deaths or of relapses per person-year of observation. The pur­
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pose of the calculation in each case is to estimate a risk, i.e. the 
probability of an occurrence per unit time, while allowing for the 
time during which the risk has operated on each person.

Clearly, such estimates are important in many situations. Thus, 
the conception rate is intended to estimate an important com­
ponent of reproduction rates, namely, the monthly chance of con­
ception (fecundability). Estimates of this risk may be crucial to 
evaluation of contraceptive methods and of family planning pro­
grams. Similarly, comparisons of death rates, of morbidity rates, 
or of relapse rates may be crucial in epidemiological investigations 
and in evaluations of therapy.

It seems desirable to investigate the properties of an index that 
is often used for important purposes and that apparently has con­
siderable appeal. The calculations obviously treat 20 years of 
observation in one person as equivalent to one year in 20 persons 
or to six months in 40 persons. Intuitively, such an assumption 
seems unrealistic; its effects under different circumstances merit 
some study.

An alternative method of measuring risk, the actuarial or life 
table method, is in the opinion of many a better way of studying 
events that may occur during a period of time.4,5,6 The focus here 
is, however, the behavior of the exposure-time index under several 
sets of assumptions. Interest will be directed to the expected value 
of the index and its sampling distribution under those assumptions, 
with particular attention to :

1. The changes effected in the index by increasing the duration 
of observation or increasing the number of subjects.

2. The effect of unequal durations of observations for individual 
subjects. Often, subjects are under observation for unequal periods 
of time: they enter at different times but the study has a set closing 
date, they move away, or cease to report for other reasons.4 
Subjects not available for observation throughout the complete 
period of the study will be referred to as withdrawing from observa­
tion or as losses. 3

3. The effects of heterogeneity among the subjects, i.e. of unequal
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risks with respect to the occurrence being studied, and also of
unequal probabilities of withdrawing for different subjects.

The report will be presented in three parts: a statement of the 
problem and a summary of previous work, a description of the 
methods used in this investigation, and a report of the findings with 
numerical illustrations. An appendix summarizes some of the theo­
retical results whose derivation is presented elsewhere.7 For concrete­
ness, most of the ensuing discussion will be in terms of conceptions 
and the conception rate, although it applies equally well to many 
rates calculated in the same fashion. For more general purposes, 
we may refer to an occurrence-time index, an occurrence rate or 
an occurrence probability.

THE INDEX

Definition
The index may be calculated in a number of different ways. 

With respect to fecundability, for example, the numerator may 
be defined variously as all first conceptions occurring during the 
period of observation,2 as all first conceptions that lead to live 
births,8 or otherwise. In the presence of varying periods of observa­
tion for individuals in the sample, questions arise as to the best 
method of allowing for losses in both the numerator and the 
denominator.4,9,10 In the particular example of the conception rate, 
what is known as the anniversary method is often used. Thus, if 
the maximum period of observation for an individual is x  months 
plus a fraction, the risk is estimated during x  months only. In effect, 
losses are considered to occur at the beginning of a month and 
not to be “ at risk” during the month. This rule is applied equally 
to persons who do experience the event (such as conception) during 
their last fractional month of observation and to those who do not. 
If other assumptions are made, leading to modifications in the 
calculations, the model to be presented would also have to be 
modified,7 with corresponding but nonessential changes in details 
of the results.
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Review of the Problem and Previous Work
Since the index amounts to an average over time, an inherent 

assumption is involved that the risk being measured remains con­
stant for any subject during the time of observation. This assump­
tion may be very far from the truth in epidemiological or medical 
studies and in studies of contraceptive effectiveness. In the latter 
case, for example, a group of women may be followed for a 
number of months after they first start using a new contraceptive. 
Learning may produce more effective use, or, on the contrary, the 
desire to avoid conception may weaken as the months go by. This 
fact alone might be considered a sufficient reason for discarding 
the index in favor of a method (such as a life table) that is better 
adapted for observing changes in risk with time.

Even if we make the assumption of constant risk per individual, 
however, (which does not seem unreasonable in some circum­
stances), all the difficulties do not necessarily disappear.11,12 First, 
it is necessary to distinguish between a hypothetical homogeneous 
population, with an identical risk for each subject, and the more 
likely situation where the population is heterogeneous, i.e. with 
fecundability varying among couples, or mortality risk varying 
among different individuals.

In a homogeneous sample, the index is a consistent maximum 
likelihood estimator of the occurrence probability. The estimator 
is positively biased, the bias decreasing with increased sample 
size.7,10 Furthermore, under defined circumstances, an analogous 
exposure-time estimator of the probability of survival for the total 
duration of a study was found by Littell13 to have some advantages, 
in a homogeneous sample subjected to a constant risk of mortality, 
over the usual actuarial (life table) estimator.

The behavior of the index in samples of moderate size has re­
ceived little study even for homogeneous samples. For example, 
it has at times been assumed that the important determinant of 
the reliability of the index is its denominator, the exposure time. 
Thus this quantity is the denominator in Pearl’s equation for the 
variance of the index, derived by treating it as a binomial variable
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and equating the number of woman-months with sample size in 
the formula.14 It can be shown7 that this formulation is consistent 
with large sample (maximum likelihood) theory for homogeneous 
samples. Several questions then arise: Since the exposure-time can 
be increased by increasing either the duration of observations or 
the sample size, do these two procedures have the same effect on the 
index and its distribution? In general, what are the small sample 
properties of the index and the variance in homogeneous popula­
tions?

The behavior of the index when applied to heterogeneous popula­
tions has received some study for the case of conception rates. 
Thus, it has been shown that, given constant fecundability per 
couple, but variation from one couple to another, the proportion 
of those remaining at risk expected to conceive in any month de­
creases with the duration of follow up.15,16 The value of the index 
has been shown to decrease as the period of observation grows 
longer, both empirically and theoretically.17,18 In fact, after a 
sufficiently long period, the mean time to conception or, more 
generally, the mean exposure time, is expected to equal the reciprocal 
of the harmonic mean of the risk,15 and hence the index will 
approximate the harmonic mean of the probability rather than 
its arithmetic mean. Accordingly, as Gini11 and Potter18 have empha­
sized, comparisons of rates calculated for groups followed for dif­
ferent periods of time become highly questionable.

Studies have also been made of the index in artificial sampling 
experiments on real data. Thus, on sampling from a set of his­
tories, Beebe19 found that the observed variance of the index in 
his samples exceeded the variance estimated from Pearl’s formula. 
Potter and Sagi,20 in similar sampling experiments, extended the 
examination of the observed variance to include comparison with 
an estimate calculated according to the well known approximation 
to the variance of a ratio. They concluded that this approximation 
was fairly satisfactory and Pearl’s formula less so for their sampling 
scheme. They also found appreciable departures from the normal 
distribution, the index tending to be skewed to the right. Since
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there is no reason to assume that the data sampled in these studies 
were generated by homogeneous populations, the findings apply to 
heterogeneous groups in particular.

The sampling schemes described assumed an infinite population 
in which each woman had a fixed exposure time and a fixed out­
come. The variation that they estimated, therefore, consisted of 
differences among repeated samples from this fixed population. 
W e might also consider, however, that for any individual, the out­
come and the exposure time are random variables. A  scheme of 
this kind, using random numbers, was reported by Littell13 for a 
related problem in the paper already cited.

METHODS 

The Model
For the present report, the following model is postulated. In 

conformity with the definition of the anniversary method given 
earlier, it is assumed that all conceptions or events under study 
occur in mid-month and all losses from observation exactly at the 
end of a month (i.e. at the beginning of the following month).

Assume that N individuals are followed for a maximum of m 
months (from  the beginning of month 1 to end of month m). The 
sample is composed of k indistinguishable subgroups. The z'th sub­
group (where i refers to any value 1, 2, . . . , k) consists of m 
individuals (or couples) who are characterized by two probabilities 
that remain constant over time for each individual, while varying 
among subgroups:

1. The risk or conditional probability of the occurrence, e.g. the 
probability that a woman in the z'th group will first conceive in 
any month, given that she is still under observation. The risk ex­
perienced by an individual in the z’th group is denoted by pi.

2. The conditional probability that an individual in the z'th group 
will be lost from observation at the end of any month, given that 
she is still at risk, denoted by Ai.

In the “ fixed sample”  case to be discussed first, the numbers ni
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are considered fixed and the subject of study is the behavior of the 
index in identical samples. In the “ fully stochastic55 case, the model 
is extended to include also the sampling variation involved in 
choosing a sample, by considering an infinite population of whom 
the proportion Pi is characterized by the probabilities pi and Ai. A 
random sample of size N is drawn from this population and the 
index calculated.

Derivation of Results
Four principal approaches were used to derive the results:

1. Under the model described, the exact probability distribution of 
the number of losses, occurrences (A), and exposure times (B) 
in homogeneous and heterogeneous populations was derived, lead­
ing to the exact distribution of the index R = A /B .7 Numerical 
results for a few homogeneous parameters were obtained with a 
computation program on an IBM 7090. For heterogeneous samples, 
however, these computations quickly become very time consuming, 
and have not at present been pursued to any extent.

2. In addition to these exact results, the cumulants of the ratio 
in small samples from homogeneous populations were obtained 
according to the methods of Haldane and Smith,21 and the behavior 
of the cumulants studied from the results.

3. A Monte Carlo program was written to simulate the process on 
an electronic computer for samples of fixed composition. In the 
simplest case, for example, it was assumed that a homogeneous 
sample of individuals (or couples) all with risk p, and no losses 
was followed for a maximum of m months. A random number was 
selected and its value determined whether the event (conception) 
was considered to have occurred to the first individual during 
month t, where t could equal 1, 2, . . . , m. The result was stored 
and the process repeated. This sampling scheme thus allowed a 
random process to act separately in each hypothetical woman, her 
particular exposure time and the absence or presence of conception 
being a sample of the values that could be obtained for her.

After all members of the hypothetical sample had been taken 
through the process, the index was calculated for the sample. A 
total of 1000 samples were drawn for various combinations of N,
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m and p and the results were analyzed. Extensions to include losses 
and heterogeneous samples are easily made. The results obtained 
included the distributions and moments of the number of concep­
tions, the exposure time and the conception rate.

4. A computer program was written to calculate, from formulas 
given in the appendix, expected values for the number of occurrences, 
the total exposure time and the variances and covariance of these 
variables. With these results, values for approximations to the mean 
and variance of the index could be calculated in the same program.

FINDINGS

Homogeneous Samples Without Losses
Theoretical results show7 that in homogeneous samples without 

losses, under the model described, the small positive bias of the index 
increases as the period of observation (m ) is prolonged and de­
creases with increasing sample size (N).  As m becomes very large, 
the absolute value of the bias is expected to approach p(l-p)/N, 
and its relative value ( l - p ) /N .  For a moderate value of p such as 
0.2, the bias may therefore approach .8 /N  and for small values 
such as 0.001, it may approach .999/N . Even in this case, however, 
the bias is not large, unless N is quite small.

The variance of the index is reduced by increases in either m or 
N. The rate of decrease with increasing duration of observations 
(im) depends on the risk (p).  On the other hand, the reduction 
with increasing sample size is more consistent, since it does not 
depend on the value of p.

The index, in small samples, is skewed to the right for the usual 
levels of risk (i.e. p < 0 .5 ) ,  the coefficient of skewness varying as 
1 /V N . For fixed values of N, prolonging the duration of the 
study frequently tends to increase the skewness of the index and 
hence its departure from the normal distribution. This tendency 
also varies with p. The kurtosis is an even more complex function 
of the parameters and of the duration of observations, the coefficient 
of kurtosis varying as 1 /N .
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Numerical values for exact probability distributions of the index 
were calculated for small samples without losses. Examples of such 
results for homogeneous samples of 25 persons are shown in Table 1. 
In these samples, the bias in the index is under four per cent but, 
as expected, it increases with increasing duration of observation ( m ). 
Considerable increases are shown in the coefficients of skewness and 
kurtosis as m grows larger.

The reduction in the bias and the coefficients of variation, 
skewness, and kurtosis that is associated with increased sample 
size may be illustrated by comparing the values in the first part 
of Table 2, where N = 50, with the first part of Table 1.

TABLE I .  E X A C T  RESULTS FOR IN D E X  IN  HOMOGENEOUS 
SAMPLES W ITH O U T LOSSES (N  =  2 5 )

Fecundability (p) 
0.20

0.15

0.10

Duration of Characteristics of Index
Observation Coefficients of:
in Months Mean Variation Skewness* Kurtosis*

1 .2000 .40 .30 .01
4 .2034 .23 .41 .32
8 .2048 .24 .43 .60

12 .2056 .19 .61 .75
16 .2060 .18 .65 .82
20 .2063 .18 .67 .85
00 .2064 .19 .67 .85
1 .1500 .48 .40 .13
6 .1530 .24 .47 .45

12 .1540 .20 .59 .74
18 .1546 .20 .67 .90
24 .1549 .19 .70 .97
30 .1551 .19 .72 .99
00 .1551 .20 .72 .91
1 .1000 .60 .53 .31
6 .1019 .28 .47 .42

12 .1025 .23 .56 .65
18 .1029 .21 .64 .91
24 .1031 .20 .69 .97
30 .1033 .20 .72 1.06
00 .1036 .20 .74 1.04

(The values for m -> «  were calculated from approximate formulas.7*21) 
* The measure of skewness is nt/o9, and of kurtosis, m/v* ~  3.
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TAB LE 2 . THE EFFECTS OF LOSSES ON TH E IN D E X  IN  A  HOMO­
GENEOUS POPULATION. SAMPLE SIZE =  5 0 , AND P =  0 .2 0

Simulation Program (The values given for finite m were obtained from a 
simulation program.)

Duration of Characteristics of index
Observations Coefficients of
in Months Mean Variation Skewness Kurtom

Monthly probability of loss =  0
1 .2000 .283 .21 <.01
4 .2012 .167 .29 .16
8 .2017 .142 .31 .30

12 .2020 .135 .43 .38
16 .2025 .132 .44 .41
20 .2026 .132 .47 .42
00 .20320 .130 .47 .42
Monthly probability of loss = 0.1
1 .2000 .283 .21 <.01
4 .2028 .165 .22 +  .06
8 .2027 .143 .31 -.21

12 .2032 .135 .38 -.1 0
16 .2035 .133 .41 -.0 8
20 .2038 .132 .43 -.0 6
00 .20316 .132 .46 +  .45
Monthly probability of loss = .05

1 .2000 .283 .21 <.01
4 .2007 .169 .24 .23
8 .2015 .151 .43 .72

12 .2018 .147 .45 .85
16 .2023 .144 .50 .99
20 .2024 .144 .50 1.00
00 .20304 .140 .43 +  .39

The Effect of Losses on Homogeneous Samples
The effect of losses on estimates made for homogeneous samples 

was studied both in theoretical results and by means of the simula­
tion program. For moderately long periods of observation, the effect 
of introducing losses or making them more frequent (i.e. of increas­
ing A) may vary with the levels of p, A and m. As m becomes 
very large, however, the bias in the index is expected to be decreased 
by the presence of losses, the relative bias approaching the value 
(1-A) ( l - p ) /N .  The effect of losses on the higher moments of R 
is also not a simple, monotonic function of A. For large m, however,
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and small p, the presence of losses will usually increase the relative 
variation.

Table 2 presents some illustrative numerical results of the simula­
tion program, for samples of size 50 with fecundability equal to 0.20, 
the monthly probability of loss taking on values of 0, 0.01 and 
0.05. With a monthly probability of loss equal to 0.01, the bias 
in the mean, i.e. in E ( R ) ,  was increased for moderate values of m. 
The coefficients of variation and skewness showed little change, 
the former tending to be a little higher and the latter a little lower 
than in the cases without losses. The coefficient of kurtosis became 
negative, then decreased in absolute value with increasing m, and 
was expected to be positive as m became very large.

In the simulation experiments with a monthly probability of loss 
equal to 0.05, the mean value of R  was lower, showing a smaller 
bias than when A = 0, at all values of m calculated. The variance 
and the coefficients of variation and kurtosis were all greater than 
in the case without losses. The coefficient of skewness in this case 
showed an inconsistent relation to that in the case without losses. 
For very large m, however, and p = 0.2, the skewness is expected to 
be reduced by losses.

Heterogeneous Samples (Fixed Sample Case)
The expected value of the index in heterogeneous samples is a 

complex function of the degree of heterogeneity, the various prob­
abilities, and the duration of observations.7 As already mentioned, 
in a heterogeneous group without losses the expected value decreases 
with increasing m: from the arithmetic mean fecundability of the 
group in the first month toward the harmonic mean. If the sample 
is small, however, the tendency for the index to decrease in value 
is counteracted in part by positive terms in the expected value of 
the ratio, such as are responsible for the positive bias of the index 
in homogeneous samples.

Before turning to small samples and to other complications, it 
should be emphasized that even for large samples without losses 
and with equal periods of observations, occurrence-time indices may 
not serve as valid comparisons, because arithmetic and harmonic
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means do not necessarily vary in the same direction. Thus, it is easy 
to imagine that one of two samples has a higher arithmetic mean 
risk but a lower harmonic mean than the other. In such a case, 
indices calculated after a short period of observation would indicate 
that this first sample had the higher risk; after a longer period of 
observation, the conclusion would be reversed.

Almost all the numerical calculations performed for heterogeneous 
groups utilized approximate formulas for E (R )  and its variance.22 
Comparison between these approximations and exact results, in a 
few instances, showed that the approximations gave lower values 
than the exact results, the agreement improving with increasing 
sample size. In general, the approximations are therefore con­
servative, that for the variance being more so than that for the 
mean.

TA B LE  3 . TH E EFFECT OF SAMPLE SIZE ON THE EXPECTED 
VA L U E  OF TH E IN D E X  [e ( r ) ]  IN  A  HETEROGENEOUS MODEL 
W ITH O U T LOSSES

Ratio of the Expected
Number of Occurrences Approximate E(R)

to the Expected Exposure Sample Size
m Time saj 11 N  = 800

1 .1667 .1667 .1667
2 .1655 .1681 .1656
3 .1643 .1680 .1645
4 .1632 .1675 .1634
5 .1621 .1669 .1624
6 .1612 .1662 .1614
7 .1602 .1656 .1605
8 .1594 .1650 .1597
9 .1586 .1644 .1589

10 .1578 .1639 .1581
11 .1571 .1634 .1574
12 .1565 .1629 .1568
13 .1559 .1625 .1562
14 .1553 .1622 .1557
15 .1549 .1618 .1552
00 .1500 .1598 .1505
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A numerical example of the effect of sample size on the ex­
pected value of the index for heterogeneous groups without losses 
is shown in Table 3, where it is assumed that the occurrence prob­
ability for two-thirds of each sample is equal to 0.2 and for the 
remaining one-third it is equal to 0.1. The first column in Table 3 
shows the ratio of the expected cumulative number of occurrences 
(conceptions) to the expected cumulative exposure time at each 
month. This ratio, which is not affected by sample size, decreases 
with time, from the initial value of 0.1667 toward 0.1500 (the har­
monic mean probability). For a sample of size 15, even the ap­
proximation for E ( R ) ,  which is a little lower than the exact value, 
is considerably higher than the ratio just discussed. In fact, from 
months two to five inclusive, it is higher than the first month’s value 
of 0.1667. It remains well above the ratio of the two means at all 
times. This positive discrepancy increases with m, the asymptotic 
value for very large m being more than six per cent higher than 
the ratio of the expectations. When the sample size is increased to 
300, however, as in the last column, the expected value of the index 
closely approaches the ratio of the two means in the first column.

If probabilities of loss are included in the model, the Pearl Index 
for a heterogeneous sample can take on a rather wide range of 
values depending on the postulated probabilities of this outcome, 
even if they be equal for all subgroups. This phenomenon is to be 
expected since, at any time after the beginning of the study, the 
composition of those remaining is a function of time, the occurrence 
risks, and the probability of loss. In the context of conception rates, 
for example, a larger proportion of the more fecund women than 
of the less fecund ones will have conceived at any time after the 
beginning of the study, but the relative proportions change from 
one time to the next. Consequently, the composition of the remain­
ing sample keeps changing and the composition of the losses must 
change as well. Late losses will include relatively more of the 
less fecund women than will early losses. Naturally, the effect of 
losses on the composition of the group depends also on the rate 
at which they are lost, i.e. on the value of A.

Numerical examples of these effects are seen in Figure 1, for
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Figure 1. Approximate expected values o f the Index according to duration 
of the study. Samples consisting of 250 individuals with monthly risk equal 
to 0.05 and 150 with monthly risk equal to 0.20. Monthly probabilities of 
leaving study are:

SetC SetD SetE SetF
Less fecund 0 .05 .01 .10
More fecund 0 .05 .10 .01

heterogeneous samples with N = 400. The composition of the samples 
for these four sets of calculations was identical with respect to 
fecundability. In Set C, the probability of loss was put equal to 
zero, and in Set D this probability was assumed equal to 0.05 for 
all individuals in the sample. This assumption produces an increase 
in the expected value of R, the increment increasing with the 
passage of time. When individuals from the more fecund group 
are lost at a higher rate than those from the less fecund (Set E), 
the expected values o f the index fall below those in Set C. Con­
versely, if the rate of loss is higher for the less fecund group, the 
expected value of the index is relatively high (Set F ). While these 
results are not surprising, they demonstrate the problems involved 
in using the index for heterogeneous samples containing individuals 
followed for unequal periods of time.
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The index behaved more erratically in the examples of Figure 2, 
which relate to samples of 1000 consisting of a mixture of four sub­
groups, in all of which the distributions of fecundability were again 
identical. The expected values cannot be characterized consistently 
for different assumptions about the probabilities of loss. Again, if 
this probability is assumed to be identical for all individuals in the 
sample, the expected value of the index is higher than in the 
absence of losses (Set H versus Set G ). For Set J, it was assumed 
that individuals in the sample were subject to unequal probabilities 
of loss, which were positively correlated with fecundability. The 
expected values of the index in the earlier months were below 
the corresponding values in Set G, from which losses were ex­
cluded. During the third year, however, the values in Set J became 
higher than those in Set G. Consequently, comparisons between 
two such samples (which have identical distributions of fecund­
ability) would indicate higher conception rates for Set G if both 
samples were followed for two years or less, and lower rates for

Figure 2. Approximate expected value of the Index according to duration 
of the study. Heterogeneous samples consisting of 4 subgroups. In all cases, 
the mean risk is .0645, its variance .0027, and the harmonic mean is .0214. 
The probability of loss is zero for set G, equal for all individuals in set H 
and positively correlated with risk in set J.
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Set G if both samples were followed for more than three years. Thus, 
even keeping the duration of follow-up equal for two such samples 
would not provide a valid comparison of their fecundabilities.

Heterogeneous Population (Fully Stochastic Case)
The foregoing has been concerned with the effects of stochastic 

variation only in samples of fixed composition. If we add to our 
assumptions by providing for variation among samples drawn 
from a heterogeneous population in the way described earlier, it is 
found that both the index itself and its variance may be expected 
to be higher than in the fixed sample case.7

A  numerical example is shown in Table 4, where the fixed 
sample has a composition identical with that of the population in 
the stochastic case. The example is relatively simple in that it ex­
cludes the possibility of losses and specifies only two subgroups in 
the population. It can be seen, however, that the variance of the 
index is considerably higher if the formula is based on the more 
appropriate assumption that includes sampling variation. More 
important than the variance, however, is the related effect on the 
expected value of the index, which departs increasingly from the 
changing values of the ratio of the two expectations in column 1.

Provision for losses in this model would result in values even more 
discouraging than those shown in Figure 2.
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The behavior of the index “ occurrences per person year of 
exposure” has been studied through a mathematical model. Nu­
merical illustrations of the results, obtained by exact calculations, 
by a simulation program, and from approximate expressions, have 
been presented here. In all cases, it has been assumed that the 
risk per unit time is constant during the period of observation for 
any individual. Otherwise, the index is obviously not a suitable 
measure of risk.

In circumstances where it may be reasonable to assume that the 
sample is homogeneous, i.e. that all individuals have the same con­
stant risk, the index may be treated as an estimate of that risk 
provided that the sample is large. Generally, the disadvantages are 
diminished when the size of samples is increased, but aggravated 
when the duration of observation is prolonged. In such homogeneous 
samples, the index has a small positive bias which increases with 
the duration of follow up and decreases with increased sample 
size. The variance decreases both with increasing sample size (N) 
and with the duration of observations (m).  In general, the index 
is skewed, the skewness being to the right if the risk is less than 
^2 . This asymmetry increases with m and decreases when N is 
increased. The effect of changing probabilities of loss on these 
measures varies at different levels of risk. In many of the situations 
of interest, however, losses will reduce the bias and increase the 
variance of the index, according to the postulated model.

On the more realistic assumption that the risks or probabilities 
under study are not identical for all individuals in the sample, the 
index is of questionable value. In particular, if it is assumed also 
that losses may occur (this term including entry into the sample 
at different times), the behavior of the index may become highly 
erratic as the duration of follow up is prolonged. Consequently, 
the index cannot be recommended as a basis for comparing two or
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more groups even if they are observed, for the same length of time, 
in circumstances where it is not reasonable to assume that each 
sample is homogeneous. Other measures of risk that evaluate 
changes occurring with the passage of time, such as life table 
attrition rates,6 seem clearly preferable.

The findings reported here suggest that conclusions that have 
been based on this index in various studies may be subject to some 
question. Investigators may find it necessary to re-evaluate data 
on which such conclusions have been based.
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APPENDIX

The following symbols, some of which are defined in the paper, will 
be used:

N the number in the sample

l =1

Pi the risk (fecundability) of individuals in the ith group 
Qi =  1 -  Pi
A i the monthly conditional probability of loss for individuals in 

the ith group
7i =  1 — Ai
m duration of the study
P i  the proportion of a population that belongs to subgroup i.

TTi =  1 -  (7iqOm
Vi =  1 — Y iq i

A = the total number of occurrences (conceptions) observed 
B =  the total number of person months of observation
R =  A /B  =  the Pearl index, i.e. the number of occurrences per 

person-month of exposure
E (X ) and V (X ) — the mean and variance, respectively, of 

variableJx

k

i=1
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T he theoretical results, g iven  the assum ptions in the m odel, are: 

F or hom ogeneous sam ples o f  size N ,

E (R ) =  P +  P {(1  -  v)t  -  m y (l  -  * )  J /N tt2 +  0 ( N -2) (1)

V(R) - !;+S t1"T(1 -2p)(1 -8,,)
-  * +  — (1t  (2 v +  3-yp)

-  > m i p ( 1  ~  * ) ( S  ~  +  0 ( N “ * ) .
Generally,

E(R) = 

V(R) =

E ( A ) f  Y a r (B )
E (B ) L { E ( B ) } 2 “
f E ( A ) T  f  Y a r (A ) , 
L E (B )J  L {E (A ) }2 +

C o v (A ,B ) 
' E (A )E (B )  
Y a r(B ) 
{ E ( B ) } 2

■] +  0 ( N " 2)

2 C o v (A ,B ) l  
E (A )E (B )  J

+  0 (N ~ 2)

(3)

(4)

In heterogeneous sam ples, the quantities needed in  (3) and (4) 
are found to  be :

F or  the fixed case:
E(A) SniPiTTi/vi
E (B ) S n iT i/ Vi
Y (A ) S n i(p i7ri)(j'i — PivO /^i2
V (B ) S n i( l  -  yi) [ l  -  (1 -  *0 U  -  +  (2m  -  l ) ^ } ] / ^ 2
C ov (A ,B ) 2 n iP i(l  — 7Ti) (vi — m v i)/v i2

F o r  the stochastic case:
E (A ) NSPiPiiri/v i  
E (B ) NSPiTTi/vi

V ar(A ) N [2PiPi7ri/^i][l — S P ip u n /v j
V ar(B ) N [2P |{(1  +  y ^ i  -  2 m (l  -  x 0 } / ^  -  { S P i ^ M } 2] 

C ov(A ,B ) N[2PiPi{7Ti — m j/i(l  — in ) } /v i2 — {S P ip u r i/vi} {S P iir i/p j}]

89



REFERENCES

1 Pearl, Raymond, Factors in Human Fertility and their Statistical Evalua­
tion, Lancet, 225, 607-611, September 9, 1933.

2 Tietze, Christopher and Lewit, Sarah, Recommended Procedures for the 
Study of Use-Effectiveness of Contraceptive Methods, International Planned 
Parenthood Federation Handbook, Part I3 London, International Planned 
Parenthood Federation, 1962, pp. 59-72.

3 Other forms of the Pearl Index, which attempt to estimate an average life­
time risk and include more than one pregnancy per woman, will not be con­
sidered here.

4 Elveback, Lila, Actuarial Estimation of Survivorship in Chronic Disease, 
Journal of the American Statistical Association, 53, 420-440, June, 1958.

5 Chiang, Chin Long, A Stochastic Study of the Life Table and its Applica­
tions: I, II, III, Biometrics, 16, 618-635, December, 1960; Human Biology, 32, 
221-238, September, 1960; Biometrics, 17, 57-58, March, 1961.

6 Potter, Robert G., Additional Measures of Use-Effectiveness of Contracep­
tion, Milbank Memorial Fund Quarterly, 41, 400-418, October, 1963.

7 Sheps, Mindel C., Characteristics of a Ratio Used to Estimate Failure 
Rates, in press.

8 Chandrasekaran, C. and Freymann, Moye W., Evaluating the Effects of 
Community Efforts to Modify Family Size, in Public Health and Population 
Change: Current Research Issues, M. C. Sheps and J. C. Ridley (eds)., Cam­
bridge, Massachusetts, Schenkman Publishing Co., Inc., 1965.

9 Dorn, Harold F., Methods of Aanalysis for Follow-up Studies, Human 
Biology, 22, 238-248, December, 1950.

10 Seal, Hilary, The Estimation of Mortality and Other Decremental Proba­
bilities, Skandinavisk Aktuarietidskrift, 37, 137-162, 1954.

11 Gini, Corrado, Sur la mesure de l’efficacit6 des pratiques anticeptionalles, 
Revue de Vlnstitut International de Statistique, 10, 1—35, 1942.

12 Sheps, Mindel C., Applications of Probability Models to the Study of 
Patterns of Human Reproduction, in Public Health and Population Change: 
Current Research Issues, M. C. Sheps and J. C. Ridley, editors, op. cit.

13 Littell, Arthur S., Estimation of the T-year Survival Rate from Follow-up 
Studies Over a Limited Period of Time, Human Biology, 24, 87-116, May, 1952.

14 Pearl, Raymond, On the Frequency of the Use of Contraceptive Methods, 
and Their Effectiveness as Used, By a Sample of American Women, Bulletin 
de Vlnstitut International de Statistique, 27, 208-224, 1933,

90



15 Henry, Louis, Fondements th£oriques des mesures de la f6condit6 naturelle, 
Revue de VInstitut International de Statistique, 21, 135-151, 1953.

16 Sheps, Mindel C., On the Time Required for Conception, Population 
Studies, 18, 85—97, July, 1964.

17 Tietze, Christopher, Differential Fecundity and Effectiveness of Contra­
ception, Eugenics Review, 50, 230-237, January, 1959.

18 Potter, Robert G., Length of the Observation Period as a Factor Affecting 
the Contraceptive Failure Rate, Milbank Memorial Fund Quarterly, 38, MO- 
152, April, 1960.

19 Beebe, G. W., Contraception and Fertility in the Southern Appalachians, 
Baltimore, The Williams and Wilkins Co., 1942, pp. 222-223.

20 Potter, Robert G. and Sagi, P. C., Some Procedures for Estimating the 
Sampling Fluctuations of a Contraceptive Failure Rate, in Research in Family 
Planning, C. V. Kiser, editor, Princeton, N. J., Princeton University Press, 1962, 
pp. 309-405.

21 Haldane, J. B. S. and Smith, S. M., The Sampling Distribution of a 
Maximum Likelihood Estimate, Biometrika, 43, 96-103, June, 1956.

22 Hansen, Morris H., Hurwitz, W. N. and Madow, W. G., Sample Survey 
Methods and Theory, Vol. 2, New York, John Wiley & Sons, Inc., 1953.

ACKNOWLEDGMENTS

A large part of the investigations on which this report is based 
were carried out at the University of Pittsburgh. Computer programs 
for the results were written by Helen Chun and Joel Williamson; 
Lynn Doney and Florence Baseman assisted with calculation.

This investigation was supported in part by Public Health Service 
Research Grant GM 13436 (formerly 11134) from the National 
Institute of General Medical Sciences and by computer grant 
G 11309 from the National Science Foundation.

91


