
THE EFFECTS OF CHANGES IN MORTALITY AND 
FERTILITY ON AGE COMPOSITION

A n s l e y  J .  C o a l e 1

THE age composition of any population is determined 
wholly by the past history of its births and deaths at 
each age, and by the number and age of the migrants 

who have entered or left the population. In the 19th century 
and the first half of the 20th, many national populations have 
been characterized by quite substantial changes in birth and 
death rates, and, inevitably, by considerable changes in age 
composition. Our purpose is to analyze as generally as we can 
the effects of changed vital rates on populations undisturbed 
by migration.

We cannot provide a usefully clear analysis of the general 
case of an arbitrary initial age distribution, arbitrary initial 
vital rates, and arbitrary vital rate changes. One reason that 
this case is too complicated is that the age distribution would 
typically change from its initial form even if the birth and 
death rates were to remain unaltered. In other words, most 
age distributions have unavoidable alterations built in—for 
example, a small cohort due to a pronounced birth deficit for 
a few years will remain smaller than neighboring cohorts as 
it becomes older and there will be a hollow moving out through
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the age distribution with the passage of time. In order to iso
late the effects of vital rate changes from these built-in changes, 
we will assume, for the most part in what follows, that the 
initial population has the so-called stable age distribution—a 
construct of population analysis partly originated and thor
oughly explored by Lotka [Lotka, 1939]. The stable age dis
tribution is the age distribution which would ultimately be 
established in a closed population if it maintained fixed sched
ules of fertility and mortality—the only age distribution with 
no built-in change.

Vital rate changes will be analyzed in two different ways. 
First, we will consider the ultimate age distribution which 
would arise from the indefinite continuation of new vital rates. 
This distribution is independent of the time sequence by which 
the rates are introduced. The first form of analysis will con
trast, in other words, the new stable age distribution implicit 
in the new schedule of rates with the old distribution implicit 
in the old schedule. The second kind of analysis will explore 
the immediate effects of vital rate changes occurring in a par
ticular time sequence. The ultimate stable age distribution 
is analogous to the “ steady-state” response of a mechanical 
or electrical system to a new set of forces, while the changes in 
response to a particular sequence of rates resemble the transient 
characteristics of a physical system. The analogy suggests 
(correctly) that the steady-state response presents the easier 
problems to solve.

Throughout our discussion, the population considered will 
consist entirely of females: only female births, female fertility 
rates, and female deaths are treated. Mutatis mutandis, the
same analysis would apply with equal validity to males. One 
needs to analyze the two sexes simultaneously only out of a 
concern for the logical consistency of the assumed vital rate 
changes for each sex. We will take advantage of the relative 
simplicity of analyzing one sex, and will consider as secondary 
such questions as the effect of the availability of spouses in 
determining fertility.
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If the proportion of females born alive who survive to age a 
is la, and the probability of bearing a female child at age a is 
m (a), and if these functions remain unchanged, a constant 
rate of growth will eventually be established. The age distri
bution will become:
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( 1 ) -(a) - n (a)
N

e -L

/
= be-ML

e-ralada

where c(a ) is the proportion of the female population at age a, 
n(a) is the number at age a, N is the total number of females, 
u is the oldest age attained, r is the constant rate of growth 
finally established, and b is the female birth rate when growth 
rate has become r [Lotka, 1939].

The effect of the fertility schedule, m (a), in this scheme, 
can be seen when one considers that the product of the number 
of women at each age by the fertility schedule summed for all 
ages must equal the number of births.

f c( a)m (a)da = b,
o

or

or

(2) J^e~ra lam ( a) da = 1
o

Our problem is to compare two age distributions, c (a ) and 
c '(a ), given two mortality schedules, la and l'a, and two fertility 
schedules, m (a) and m '(a). The two may be compared by 
taking the ratio of one age distribution to the other:

b' l'a e-ia b' l'ac



where Ar is the difference between the two growth rates.2
c ' .We will observe at what ages this ratio — increases, at what

ages it decreases (and by how much) in response to differences 
in mortality and fertility.

Stable Age Distribu
tions with the Same 
Mortality but Differ
ent Fertility Schedules.
We first consider the 
ratio of two stable 
age distributions where 
l'a = la at all ages, but 
m '(a) =^m(a). Under 
these circumstances 
equation (3 ) takes the 
simple form

c' b'(4 ) ( a ) -

The ratio equals

at birth, and declines 
lOOAr per cent per year 
thereafter. At an age 
a approximately equal 
to the average of the mean ages in the two stable age distribu
tions,3 the ratio passes through unity.

Thus the higher fertility age distribution always has a greater 
proportion at the young ages, and a smaller proportion at the

2 W e will always designate the age distribution with the larger growth rate by a 
prime, so that Ar will always be positive.

3 Lotka has shown (p. 25) that a =  X i--^ p  (r +  rO (rs +  rr' +  r,s) + . . .  where 

?.n =  nth Thielian semi-invariant of the life table. But -  t -— =  ?.i -  -^r (r +  rO +

Thus the difference between a and is approximately (A r)1, which is

usually negligible (for the largest observed value of ?.=, and Ar =  .03, this difference 
is about one-third of a year).
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Figure 1. — (a ) for stable age distribu

tions, with the same mortality but different 
fertility.



old ages, the dividing point being (loosely speaking) the mean 
age of the population. (See Figure 1.)

How much difference in fertility is required to produce a 
given ratio of birth rates and a given difference in r? This ques
tion is readily answered when the two fertility schedules have 
the same form, with one being the same multiple of the other 
at all ages. Thus if m '(a) = K • m (a),

-°f*^  ( approximately)4
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(5) Ar =

where T  is the mean length of generation.
c '

From (4 ) we note that — (a ) = = 1, or

(6)
b'

= eAra

Combining (5 ) and (6 ) we can see that

(7) lo g e  i == q-> lo g .
m '(a)
m (a) , and

A This approximate expression can be justified as follows:
(a) e "^  Ro = e“rT ' R'o=l (where Ro and R'o are net reproduction rates, and T 

is the mean length of generation);
(0

(b) but R'0 =  Jm'(a)lada = K R 0, hence0
(C) er'T'-rT = K
but T  =  f ;  +  } j ( f ; ) 2 - f ; f r + • • • (Cf. Lotka, 1939, p. 69)

(if
where Rn =  /a nlam (a)da  0
Note that R'n =  K R n, hence

However,  ̂j —  T  empirically for a wide range of fertility and

mortality schedules, hence T (1  -  Ar) ^  T ' <  T  .

(c) can be rewritten: r 'T '- r T  = log K , and thus

(.) I"** <Ar«S
T ( ‘ - l )

hence (5) can be off at most by a factor of

log K  
T U - r O  ’

1
Ur'* However I i7 I ^  .03 in almost

every instance; (5) therefore holds to within about 3 per cent.
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( 8) loge —(a) a - a ,  m '(a) 
IogeT  IU8#m (a)

Whether the ratio of the birth rates is greater or less than the 
ratio of fertilities depends on whether a is greater or less than T. 
This result is quite in accord with common sense, since all ages 
less than a have proportionately greater numbers when fertility 
is high. When a is greater than T, the central age of childbear
ing (to characterize T  loosely) has relatively greater numbers 
in the high fertility age distribution. High fertility is thus com
bined with a favorable age distribution to produce a more than 
proportionate rise in the birth rate.

If the two fertility schedules do not differ merely in level, but 
also in form, equation (5 ) above will no longer hold. In the 
more general case, Ar may be expressed as follows:

R'„

(9)
loge

Ar- Ro rAT

If the fertility schedules differed only in the age at which 
each level of fertility was reached, the principal determinant 
of Ar would be the difference in T. If m '(a) = m (a -x ) ,  AT

R /
would be approximately equal to -  x and log would differ

. 0from 0 only because the m' schedule of fertility, occurring at 
younger ages, would be combined with lower mortality rates. 
In this instance, (9 ) can be written, approximately:

( 10) Ar =
1t - »

I t

loge -f— + rx

T
sqT-i + rx 

T - x
where xqT-x is the probability of dying between ages T - x  and 
T  (Dublin and Lotka, 1925).

Differences in fertility, in sum, produce a very simple dif
ference in stable age distributions: one age distribution has a 
higher initial ordinate and a steeper slope than the other, larger 
fractions of its population in the younger ages, an equal frac
tion at the mean age, and smaller fractions at the older ages.
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Stable Age Distributions with the Same Fertility but Differ
ent Mortality Schedules. The effect of different mortality rates 
on the stable age distribution is more complicated than the 
effect of differences in fertility.

The general expression for the ratio of the two age distribu
tions is:

(3 ) j W ' W ' *
In its logarithmic form, this equation becomes

(ID
Figure 2 represents the right-hand side of equation ( I I )  

geometrically, and isolates the factors which determine the 
differences in two stable age distributions.

The vertical dimension of the cross-hatched area represents
1'.log -  (a ), being log j - Where the distance

Figure 2. The ratio of two stable age dis
tributions, with the same fertility but differ
ent mortality.

between the two lines
Qf

is great, the ratio of —
(a) differs substan
tially from unity. The 
two lines intersect at 
ages where the two 
distributions have the 
same proportions.
We will next describe 

the basis for the geo
metric constructions in 
Figure 2 which enable 
us to determine Ar and

-g- from a knowledge

(primarily) of log
Ya 

1.
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These geometric constructions are based on two equations, 
and an approximation to log1 when |x — 1 j is small.

The first of the equations underlying our construction follows 
directly from (2 ):

as
(12) / (e -r'Ta- e - rala)m(a)da = 0

ai

where ai and a2 are the youngest and oldest ages of childbearing.
The second equation results from the necessity for each age 

distribution to total 100 per cent:

(13) /(b 'e _r T a -  be_rala)da = 0o
We will now consider the approximation log(x) s x - 1  

(when x is near to 1) as applied to log  ̂ e_Ara j .

U4>

When (14) is compared with (12), it becomes clear that
a2

J *log e~Al*^e~ralam (a)da =  0, or that

( I S ) Ara) c(a )m (a )da  =  0

Equation (15) tells us that from ages 15 to 45 the positive 
l'a

areas between log -p and Ara are approximately balanced by i&
the negative areas when the areas are “weighted”  by the num
ber of births at each age of mother. This relation enables us 
to estimate Ar quite closely by graphical methods. One plots

, draws a vertical line at 15 and one at 45, and pivots a
straight line on the origin, until, making allowance for weight
ing, the positive and negative areas between the straight and 
curved lines are balanced in the interval 15 to 45.

In Figure 3 the straight line is adjusted until the two shaded 
areas, weighted by the curve drawn directly beneath, are equal.
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Figure 3. Determining the change in the
intrinsic rate of growth, with changing mor
tality and constant fertility.

Figure 4. Determining the ratio of birth
rates and the ratio of the proportions at
each age in two stable age distributions, with
different mortality but the same fertility.

There is a simple common sense basis for equalizing these 
areas. The distance between the two lines represents the log 
of the ratio of one age distribution to the other, when both are 
drawn from the same initial ordinate—when we assume b' = b. 
If the birth rates were equal, the excess mothers of one age dis
tribution at some ages (weighted by their childbearing rates)
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would have to be balanced by a relative deficit of mothers at 
other ages (weighted by their childbearing rates). In other 
words, if we equalize the births, the assumption of constant 
fertility requires that childbearing women should also be in 
some sense equalized.

\jThere remains the determination o fp .  By the same approxi

mation used in (14), we may express log — (a ) as:

(16) l o g ^ ( a ) a . ( |  ( a ) - l ) - ( c ' ( a ) - c ( a ) ) j ^ y

When (16) is compared with (13), it becomes clear that

c(a)da =  0, or that

(17) / T  "  (  Ara -  log £ - ) }  c(a)da .  0

b'
Log can be estimated by a graphic method similar to that

employed for estimating Ar. One draws a straight line parallel
l't

to Ara such that the positive areas between the line and log p

balance the negative areas, when both areas are weighted by 
c (a ). In Figure 4, the positive shaded areas are made equal 
to the negative shaded areas, when the areas are weighted by 
the age distribution c (a ), sketched at the bottom of Figure 4.

The analysis of mortality differences might end here were it 
not for the fact that many actual mortality changes conform 
to a rather simple pattern, which can be expressed as the sum 
of three even simpler components. The total effect on the stable 
age distribution of a typical change from one life table to 
another is the same as if these three component changes had 
occurred sequentially.

The three components of the typical pattern found in life 
table changes are labeled A, B, and C in Figure S.



Curve D represents the combination (sum) of A, B, and C.
l'aThe typical pattern consists of a relatively sharp rise of log p
la

beginning at age zero and extending (with diminishing slope)
through the early
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Figure 5. Components of loge -A  in a typi-
la

ch ildhood  years, a 
nearly linear rise ex
tending from age 5 to 
age SO, 60, or beyond, 
and section of increas
ing steepness in the 
older ages. The linear 
portion is extended and 
lowered so that it 
passes through the 
origin, forming A in 
Figure 5. The excess

cal change in mortality. improvement in log ^
in childhood is represented by B, and the excess in the older 
ages by C. We will now show the effects of component A—a

l'alinear log p  that passes through the origin.
la

l'a
(i) Curve A in Figure 5. The linear rise in log p  is the sim-

la
r

plest to analyze. Assume log p  = sa, where s is constant. Under
la

these circumstances, l'a = Le6*. Also Ar = s, -g- = 1, and the two

age distributions are identical! This type of mortality differ-
r

ence, of course, is one where the slope of log p  is constant. Now
la

Y J
the slope of log -p—which is equal t o ^  (log l'a -  log la)— equals

the difference in what is called the force of mortality at age a. 
If the slope is constant, the change in the force of mortality is
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the same for all ages. A direct implication of the constant slope 
is that the probability of surviving for a given period (say a 
year) is changed in the same proportion at all ages. If the 
proportionate change in the probability of surviving at every 
age is the same, the two stable populations will have growth 
rates differing by an amount equal to the uniform difference in 
the probability of surviving, but will have precisely the same 
age distributions.5 This result can be readily understood by ob
serving that the higher probability of surviving (which with a 
given growth rate would tend to make the population older) 
is exactly offset by the higher growth rate (which with a given 
life table would tend to make the population younger).

(ii) Curve B in Figure 5. The B curve in Figure 5 represents
an improvement in mortality concentrated in the early child
hood ages. Such a difference has an effect similar to that of 
different fertility. In fact, if the mortality difference were 
wholly in the first few moments after birth (to take the ex
treme case), it would be indistinguishable from a difference in 
fertility. The age distribution is indifferent, we might say, as 
to whether a greater flow of infants emerges from a higher birth 
rate or from a lower infant mortality rate.

1'aAssume, then, that -r- = k for a ^  e, z being a small positive
la

5 This conclusion is seen immediately from the graphical technique outlined above

for determining Ar and log -r-. It can also be shown analytically as follows:b
Let l'a =  he8® 
Then from (1 2 ):

S (e“r'al«e8a -  e-raIa) m (a) da =  0
ai
as

or J (e_(r'~ s)a -  e~ra)lam (a)da = 0&i
With L and m (a) everywhere non-negative, this last equation can hold only if 

r' =  r + s, or if Ar =  s.

But c(a) — —  ,
Je-»lada0

and c'(a) =
e-r'epn

Je-r'al'„da

£-(r + s)nesa|R
oi
ê-<r+6>»esalada

= c(a)
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number. Consider the substitution of l'« for la in equation (2 ). 
We obtain

(18) J*e_tT am (a)da = k /e_t'*lam (a)da = 1
ai ai

This is precisely the same expression one would obtain if the 
life tables were the same, and m '(a) = km (a). Hence the dif
ference in r is precisely the same whether one considers a dif
ferent life table with k times the probability of surviving to an 
early age and unchanged probabilities from that age on, or con
siders a different fertility schedule with k times the fertility 
level at all ages.

Thus for this assumed difference in mortality,

lo g f£
(19)

and

(20) lo g p  (a ) st

(from considerations similar to 
those underlying (5 ))

(from considerations similar to 
those underlying (8 ))

However, the ratio of the intrinsic birth rates would be quite 
different when the difference in age distribution arises from a 
difference in infant mortality rather than a difference in fertility.

r ' h ' 1'
Since — (a ) = T- • -r1 • e'ra = 1, c b le

(21) l o g £ « A r S - l o g £

When the difference in r arises wholly from a fertility differ-
y

ence, log -p = 0, and log p- is equal to Ara. If a = T, the ratio of

the birth rates is the same as the ratio of fertilities. On the 
other hand, if infant mortalities differ and fertility rates are 
unchanged, the two stable populations will have the same birth 
rate when a = T.
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The combined effect of mortality improvements represented 
by curves A and B and Figure 5 are:

(1) To raise the growth rate by the sum of the slope of A, 
and the rise that would be caused by an increase in fertility 
equivalent to the extra improvement in mortality at early ages.

(2 ) To change the age distribution in a way nearly equiva
lent (for all but the very youngest ages) to a rise in fertility 
which would yield the same increased flow of S-year olds.

(Hi) Curve C in Figure 5. Finally, we turn to the effects of
1 'acurve C in Figure 5—the extra improvement in log -p in the
la

older ages.
c'The expression for — (a ) for this case becomes simply:

( 22) c' b' 1'.
c ( a ) - b T.

because Ar = 0. The intrinsic rate of increase is unaffected by 
changes in older age mortality since it is wholly determined by 
fertility rates and by mortality rates within and before the 
childbearing ages. Moreover, b' differs from b only because the 
greater proportion of older persons affects the relation of births 
to the total population: the ratio of births to the population

under 50 is the same in both age distributions. The ratio -g- may
be estimated by first noting that

(23)

or that j f f ^  T7  ~ l ) c ( a ) d a - °
0

I b'I ' .  , b' , 1'.
I b C ’ 1] aslog b + lo g T.>

Since
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l'a to

but from 0 to ao, log -p = 0, and /c (a )d a  = 1. Hencela 0

(25) lo g p  — /log ^ c (a )d a .

We may make a final approximation. There exists an a >  a0, 
such that

/log c(a)da = log l^ /c (a )d a .
ao la la 0

Y,If log t- rose linearly, and c (a ) declined linearly, from a0 to
la

w, a would lie one-third of the way along the interval from a0 to 
«>. Thus when only a negligible fraction survive above age 90,

rthe assumption of linearity in log -p and in c (a ) above a0 leads
la

to the approximation:

(26) log-y m (log  ^ ) c ( a 0+)
2 1

where a = j  a0 +  ̂ (90).

In other words, the per cent difference in the birth rate is 
proportional to the per cent difference in la for a centroidal age 
above ao, and to the fraction above ao in the original age dis
tribution.

The rather intricate reasoning in the discussion to this point 
may have obscured some of the more important results that the 
analysis implies. We will try to illuminate the more interesting 
conclusions— and incidentally show how the analysis works out 
in numerical form—by considering an empirical example.

The example is based on Swedish vital rates at the turn of 
the century and near the middle of the century. Specifically, 
it contrasts the stable age distribution accompanying Swedish 
fertility of 1896-1900 (gross reproduction rate 1.95) and mor
tality of 1891-1900 (expectation of life 53.6 years) with the age 
distribution implied by the fertility of 1950 and mortality of
1946-50 (gross reproduction rate 1.11, expectation of life 71.6
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years). The most notable change (Fig. 6) is the increase in 
proportions at the older ages. Until recently, this sort of “ aging” 
was commonly attributed to declines in both fertility and mor
tality.6 However, it is 
clear from  Figure 7 
that improved mortal
ity acting alone would 
have produced a 
younger distribution.
The decline in fertility 
was not m erely the 
principal force respon
sible for the “ aging”  
population; it actually 
had to overcome an 
opposing force caused 
by the change in mor
tality.

These results are 
fully explained by our 
analysis. The differ
ence between curves 1 
and 3, and between 
curves 2 and 4 in 
Figure 7 is the result 
of the “ pivoting”  effect 
of a change in fertility 
— the point of pivoting 
being the average of 
the average ages. Note 
that the intersection of
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Figure 6. Stable age distributions for 
females in Sweden in 1896-1900 and in 
1950.
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Figure 7. Stable age distributions asso
ciated with various combinations of fertility
and mortality from Swedish experience 
around 1900 and 1950.

2 and 4—which involves higher mortality—occurs at a slightly 
higher age, indicating that higher mortality produced a slightly 
greater average age.

6 Lorimer and Sauvy have both shown that the common belief that mortality
reduction typically produces an older population is mistaken (Lorimer, 1951; Sauvy,
1954).



In accounting for the effect of mortality changes, we need to 
examine first the age pattern of mortality improvement. Figure 
8 shows this pattern in the form of the natural logarithm of the 
ratio of survivors at each age in the two Swedish life tables.

The pattern, it turns 
out, can be accurately 
represented by consti
tuents A, B, and C 
( cf. Fig. 5). Thus the
analysis presented in 
equations (18) through 
(26) is fully applicable.

With the aid of this 
analysis, we may note 
the following features 
of our example:

(1 ) The decline in 
fertility produced a 
larger effect than the 
decline in mortality on 

the intrinsic rate of increase. Fertility acting alone would have 
reduced r by 17.7 per thousand, whereas the decline in mortality 
would have raised r by 8.2 per thousand.

(2) The increase in growth rate associated with the linear 
constituent A of changing mortality accounted for 4.7 per 
thousand of the change in r while the excess improvement in 
childhood mortality (B component) increased r by about 3.6 
per thousand (Equation (1 9 )).

Thus the decline in mortality, though it had nearly half as 
great an effect on growth as fertility, had a much smaller effect 
on the age distribution.

(3 ) The effect of the B component— the extra improvement 
in mortality in childhood— on the age distribution is equivalent 
to a 12 per cent rise in fertility, except for the effect on ages 
under 5. (See equation (20) and Fig. 9.) Note the effect of
the extra improvement in mortality in the older ages (the C 
component) in causing a divergence at these ages from the age

Effects of Changed Vital Rates on Age Composition 95

Figure 8. The natural logarithm of the
ratio of the survivors to each age in the life 
tables for 1946-50 and 1891-1900 (Swedish
females).
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pattern which would 
be caused by a 12 per 
cent rise in fertility.

(4 ) The age distri
bution effect of the 
same decline in child
hood m orta lity  is 
greater when fertility 
is held constant at a 
low rather than a high 
level. (See Fig. 10.) 
This result is under
standable when one 
recognizes that the im
provement in child
hood mortality causes 
the age distribution to 
pivot approximately 
on the average age. 
With low fertility and 
a relatively great aver
age age, this pivoting 
action raises the pro
portion of women at 
the most fertile ages, 
and the increased sur
vival in early child
hood is reinforced by 
a rise in the number of 
mothers. (See equa
tions (20) and (21).)

(5 ) In spite of the 
C com ponent (th e
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Figure 9. ^ (a) in response to an im

provement in mortality, and in response to 
a nearly equivalent rise in fertility.
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Figure 10. ,  . for various combinations 

c(a)
of Swedish vital rates.

extra mortality improvement in the older ages), the fraction 
at these ages is diminished, not increased, by reduced mortality. 
This result arises because the B component is so large, while 
the C component is only moderate.
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Some of the results illustrated by the Swedish example are 
universal—such as the nature of the effect of declining fertility. 
However, the results of changing mortality depend (we repeat) 
on the age pattern of the change; and of course the results in 
the example can be taken as typical only of instances with a 
similar pattern.

To get an idea of the prevalence of this pattern of changing 
mortality, we have surveyed a large number of pairs of life 
tables,7 each pair contrasting the experience of some area at 
two different dates. Some of the results of this survey are pre
sented below. The pairs of life tables are collected in groups on 
the basis of time interval spanned, and on the basis of rough 
similarity of mortality level during the same interval.

Group I consists of pairs of life tables for 11 European areas 
during the last half of the nineteenth century (life tables for 
Belgium, Berlin, Breslau, England and Wales, France, Ger
many, Italy, Netherlands, Prussia, Sweden, and Switzerland). 
Group II consists of tables for 15 countries with a relatively 
high expectation of life in the interval 1900-1941 (Australia, 
Canada, Denmark, England and Wales, France, Germany, Ice
land, Netherlands, Norway, Sweden, Union of South Africa, 
and the United States). Group III is made up of life table pairs 
for 9 countries with relatively high mortality in the twentieth 
century (British Guiana, Chile, Ceylon, Jamaica, Japan, 
Mexico, Portugal, Taiwan, and Trinidad and Tobago). Group 
IV consists of life tables for 9 countries with a high expectation 
of life and a substantial improvement in mortality during the 
interval covered— from the 1930’s to the present.

l'aWe will first summarize the linearity of log -p from ages 5 tola
50 for the life table pairs in these groups.

1',It is notable that 39 out of 44 life table pairs have a log -pla
7 This survey was made easy by access to the life tables collected by Professor 

George J. Stolnitz of the Office of Population Research— a collection including sub
stantially all of the national life tables ever published, and a large number of life 
tables for non-national areas as well.
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G roup
D e v ia t io n

< .0 1
D e v ia t io n  
.01 t o  .02

D e v ia t io n  
.02  t o  .03

D e v ia t io n  
.03 t o  .04

I .  E u rop e , 1 8 5 0 -1 9 0 0 6 5 0 0
I I .  L o w  M o r ta lity , 1 9 0 0 -1 9 4 0 13 2 0 0

III. H ig h  M o r ta lity , 1 9 0 0 - 3 1 2 3
IV . L o w  M o r ta lity , 1 9 3 5 - 9 0 0 0

T a b le  1. N u m b e r  o f  life  ta b le  pairs w ith  g iv e n  m a x im u m  d e v ia tio n  from  
l'a

stra ig h t line o f  b e s t  fit , log  from  age 5 t o  age 50 , b y  g rou p s .

function linear within 2 per cent from 5 to 50. The maximum 
departure from linearity shows the maximum error one would 
make in estimating the altered stable age distribution on the 
assumption that the change was linear. In nearly 90 per cent 
of the life table pairs this error would be less than 2 per cent. 
(Less than 2 per cent of the size of the group itself. Thus if 
the group 20-24 actually constitutes 10 per cent of the popula
tion after the improvement in mortality, it would be estimated 
within the interval 9.8 to 10.2 per cent.)

The significance of departures from linearity can be better
rappreciated when we observe what linearity in log impliesla

l'aabout changes in the probability of surviving. If log t-  is linearla
over an interval, the probability of surviving changes by the 
same proportion at all of the ages the interval covers. Thus if

1',log t~ is linear from 5 to 50, the probability of surviving fromla
age 5 to age 6 is increased by the same factor as the probability 
of surviving from 30 to 31, from 45 to 46, etc. If the probability 
of surviving a year is close to unity at some ages— say .99 or 
more—there is room for only a slight proportional increase. It 
turns out, in fact, in all three cases listed in Table 1 of a de
parture of more than .03 from linearity, that if the average im
provement from 5 to 50 in the probability of surviving had 
applied at all ages, some mortality rates would have become 
negative. In other words, the most prominently nonlinear mor
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tality improvements could not possibly have been linear—the 
improvement was too large. Even in these cases, however, the 
use of a linear relationship as an approximation to the actual 
change produces only a slightly inexact estimate of the result
ing stable age distribution.

Next we will consider the prevalence of B and C components 
in the mortality improvement patterns. In all forty-four life 
table pairs the probability of surviving to age 5 increases in 
greater proportion than the change in any other S-year proba
bility under age 50. In other words, the existence of a noticeable 
positive B component is universal for this selection of mortality 
changes. However, among group iv (most recent experience of 
low mortality areas) the B component is less pronounced. The 
C component (excess improvement in the older ages) is pro
nounced in all instances except 5 in group i, 4 in group n, 2 in 
in, and 1 in group iv. The proportional increase in the proba
bility of surviving above age 50 typically exceeds the increase 
for 5 to 50 by the widest margin in group iv. In short, the C 
component clearly exists in thirty-two of forty-four pairs of life 
tables. In the recent experience of advanced countries, it is 
becoming more pronounced relative to the other components.

The last part of our survey will examine the effect of changes 
in mortality on the median age of the stable age distribution. 
The results are shown in Table 2.

Table 2 was prepared by applying the analysis presented in

Figures 3 and 4 to log Y*
la

for all life table pairs. The reason for

Table 2. Effect of reduced mortality on the median age of the stable popula- 
tion.

G roup
M edian A ge L owered 
W hether F ertility I s 

H igh or L ow

M edian A ge L owered 
Only I f F ertility Is 

H igh

M edian A ge 
R aised

i 10 1 0
i i 15 0 0

h i 8 1 0
IV 2 3 4
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differentiating the first two columns can be seen from Figure 4.
l'aWhen log -p rises steeply enough in the older ages to produce anla

increase in the fraction above some older age, say 67 years, 
this effect will raise the median age if the original fraction over 
67 is high; otherwise the rise in the proportion aged will be 
swamped by the increase in very young. But whether there is 
or is not a large fraction over 67 in the initial stable distribution 
depends on whether fertility is high or low. Life table pairs 
assigned to column 1 of Table 2 either show a decrease at all 
ages above the original median or show a decrease at all ages 
up to a very advanced age. In these instances the median age 
is lowered without regard to the fertility level. In the second 

c '(a )column, the -■. ( fractions associated with the life table pairs 
c(a) r

have a substantial positive area above age 60 or so, and a sub
stantial positive area below age 20. Which of these predomi
nates in affecting the median age depends on the fertility level. 
The four life table pairs in column 3 combine pronounced old 
age improvement with a relatively meager improvement in 
childhood mortality.

Our survey shows that our Swedish example is typical of a 
wide range of vital rate changes in the following ways:

(1 ) The effect of declining fertility is universally to lower the 
growth rate, increase the fraction at ages under the average age, 
and decrease the fraction at higher ages.

(2 ) The majority of the life table pairs examined resembled 
the Swedish mortality change in the approximate linearity of 
the A component and in having positive B and C components.

(3 ) The B component tends to be less pronounced and the 
C component more pronounced in the recent experience of low 
mortality areas.

(4 ) In all but a small fraction of instances examined, the 
effect of mortality improvement would be to lower the median 
age of the stable age distribution.
Since mortality rates up to age 50 have reached very low



levels in the areas of lowest mortality today, there is very little 
room for improvements having the effect of making the popu
lation younger. For example, if all deaths under age 5 were 
eliminated in Sweden, and no other mortality changes occurred 
(this is the maximum B component), the effect would be equiv- 
lent only to a 2.5 per cent increase in fertility. In other words, 
further substantial improvements in mortality in the regions 
which today have the highest expectations of life will have to 
occur in ages above 50, where the age distribution effect is in 
one direction only—that of producing an older population.

T r a n s i t o r y  C h a n g e s  i n  A g e  D i s t r i b u t i o n s  A r i s i n g  f r o m  

C h a n g e s  i n  M o r t a l i t y  a n d  F e r t i l i t y  R a t e s

The stable age distribution ultimately associated with a 
schedule of vital rates clearly contrasts the effects of different 
changes in fertility and mortality. However, the stable age dis
tribution is sometimes approached only after a long interval— 
perhaps 60 years or more—of approximately constant rates. 
When fertility changes are substantial, or when sharp decreases 
in infant and child mortality occur, the transitory age distribu
tion may depart markedly from the stable form. In view of the 
increasingly uncertain course of human affairs as one looks 
further into the future, these “ transitory”  age distributions 
often have more practical interest than the remote stable 
distribution.

The conventional method for calculating the population re
sulting from a particular course of vital rates is component 
projection. This method is flexible enough to handle any course 
whatever of age specific rates, and any initial age distribution. 
But it is not always clear in a component projection whether 
particular features of a projected age distribution are the result 
of birth rate changes, death rate changes, or of the character of 
the initial age distribution. The role of the various factors can 
be clarified, however, by considering projections of certain kinds 
of initial populations with certain simple changes in vital rates. 
Specifically, we will make the following simplifying assumptions:
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(1 ) The initial age distribution is the stable age distribution 
implicit in the initial vital rates.

(2 ) The changes, if any, in fertility affect all age-specific 
rates in the same proportion.

( 3 ) Mortality changes, if any, conform to the typical pattern 
of life table changes described earlier.
The number at each age in the initial population will be desig

nated as n(a, 0 ) ;  the number there would be at time t if vital 
rates remained unchanged will be designated n(a, t ) ;  while the 
number at time t with changing vital rates will be designated 
n'(a, t ). Our analysis will obtain expressions for the ratio of 
the population at each age with changing vital rates to the 
population that would exist with no changes— expressions for

n'^a? t ) ’ we will designate f(a, t). Fertility and mortality
changes will be considered separately.

The Effects of Fertility Changes. The fertility of all age 
groups will be assumed to change in the same proportion. Thus

~ ^ ~ 0 y = g ( t )—all age-specific fertility rates have the same

time pattern. Under these circumstances:

( 1 ) f ( 0 , t ) - f g , g ( t ) f o r t g a ,

where B' is the number of births with changing fertility, 
B is the number of births that would have occurred with

initial fertility; g (t ) = is the ratio of age-spe

cific fertility at time t to that at time 0 ; and ai is the 
earliest age at which a significant rate of childbearing 
occurs.

For the first ai years, in other words, births will simply change 
in the same proportion as the change in fertility. When the 
interval following the initial change equals and then exceeds 
the earliest age of childbearing, the number of births begins to 
reflect two factors— the current fertility level and the altered 
number of mothers.
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Figure 11 illustrates 
the relation between 
g (t )  (the proportion
ate change in fertility) 
and f(0, t) (the pro
portionate change in 
births). When fertility 
is rising (g i ( t ) ) ,  the 
consequent rise in 
births follows fertility 
precisely— until the 
number of mothers is 
affected. From then on 
the proportionate rise 
in births exceeds the 
proportion by which 
fe rt ility  has risen.
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Figure 11. The effect on the number of 
births of increasing fertility [g i(t )]  and 
declining fertility [g2( t ) ] .

Similar reasoning applies to declining fertility, as shown by 
g2( t) and f2( 0 , t ). f(0 , t) may be expressed in the following 
functional relation:8

8 Equation (2) can be derived as follows:

(a) f (0 , t) =
Jn '(a, t )g (t )m (a )d a  0
Jn(a, t )m (a )d a  0

since the numerator gives total births from n '(a , t) mothers and age-specific fertility 
g (t )m (a ) , and the denominator gives total births when fertility remains constant,
(a) can be rewritten as

Jf(a, t )n (a , t)m (a )d a

(b ) f ( 0 , t ) = g ( t ) £ ------------------------------------
Jn( a, t)m (a )d a  0

and if it is noted that f (a, t) =  1 for a >  t, (b) becomes

J {f(a , t) - l } n ( a ,  t)m (a)d a

(c) f(0 , t) = g ( t ) + 1
/n (a , t)m (a )d a  0

Finally, if we note that f (a, t) = f ( 0 ,  t - a )  because of constant mortality, and in 
turn that f(0 , t - a )  =  g ( t - a )  for t - a  <  ai, and lastly that m (a) = 0  for a <  ai, 
(2) follows from (c ) .
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(2 ) f(0, t) = g (t )  {
J { g ( t -a )  -  l}c (a ,t )m (a )d a

a2
/<
ai
/c (a , t)m (a)da

+ 1>

provided t 2ai.
So far we have made no use of the assumption that the initial 

population had a stable age distribution. In fact (2 ) holds gen
erally, with c(a, t) designating the fraction of the population 
that would have been at age a at time t if fertility had remained 
constant. The assumption of an initial stable age distribution 
simply enables us to rewrite (2 ) replacing c(a, t) by c(a ). 
Since we have assumed mortality constant, f(a, t) = f(0, t - a ) .  
f(a ', t) may be written:

(3 ) f (a ',t )  = g ( t - a ')

( / { g ( t - a ' - a )  -  l}c (a , t -a '^ m fa ld a
\ ------------- iu---------------------------------------+ 1 ►
I Jc(a, t -  a ')m (a)da
l Hi ,

Again, the assumption that the initial age distribution is 
stable will permit us to replace c(a, t -  a') by c (a ). This for
midable-looking expression has the following meaning. At a 
given time t, all cohorts bom since time 0 have been affected 
by changing fertility. If fertility has been rising monotonically, 
the cohorts have been progressively enlarged. But because of 
the assumed constant mortality, the size of a cohort relative to 
what its size would have been is set at birth. Thus the cohort 
born t -  1 years ago (the cohort with a = t — 1) was determined 
by the fertility change in the first year after the change in fer
tility began. If f(0, t) is plotted as in Figure 12, from time 0 to 
time t', then f(a, t ') will be unity for a ^  t'; for a <  t', f(a, t') 
can be obtained by plotting f(0, t) from right to left beginning 
at a = t'.

Equation (3 ) will hold precisely provided t ^  2ai. As t ex
ceeds 2a!, f(0, t) will begin to be affected by second generation 
births. However, the number of second generation births will
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be negligible for sev
eral years, and equa
tion  (3 )  w ill be a 
serviceable approxi
mation for 35 or 40 
years, assuming ai = 15 
years.

The following steps 
would be necessary to 
make a numerical pro
jection of f(a, t '), for 
t' 5= 35 or 40 years, 
with a population ini
tially stable, and with 
fe rt ility  given by
m (a ,t) = g (t ):m(a, 0)

(a )  Calculate the 
population that there 
would have been at

each age, through the relation n(a, t ') = n(a, 0)ert'
(b ) Calculate f(a, t ') for each a <  t' by using equation (3 ). 

Note that f(a, t ') = 1 for a =2: t'.
(c ) Calculate n'(a, t ') = f(a, t ') • n(a, t ').
In most instances calculation of n'(a, t ') at 5-year age inter

vals would be sufficient, with other ages estimated by linear 
interpolation.

The Effects of Mortality Changes. We will now analyze
f(a, t) as age-specific mortality rates change. Here our assump
tions will be:

(a) The initial age distribution is the stable distribution 
associated with the initial vital rates.

(b ) Age-specific fertility rates remain constant.
(c ) Age-specific death rates change so as to produce a pat
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50

tern of log similar to the pattern described earlier as typi-
M u ;

cal. Thus log is the sum of three components;

(i) log j ^ y  = u (t) • a for all a

(ii) log = v (t )  f o r a > 5

(iii) log = w (t) • (a -  a<>) for a >  a0; a0 §5

We will not give an analytical expression to the portion of the 
curve between ages 0 and 5, but will only assert that log

is typically about half of log p^ jjy • Except for this interval, the 

three time functions, ( i ) , (ii), and (iii), determine a relation

ship log of the form shown by the heavy line in Figure 13.

The relation of Ia(t ) to la(0) is specified by three parameters: 
the slope a of the straight' line portion drawn through the origin

[a = u (t) ]; the height 3 of log above 5xa [3 = v (t )  ]; and

the extra slope y (a + y = total slope) of log p^ jy when a >  a<>.

The basis for this representation of life table change is empiri
cal; very many pairs of life tables from actual experience fit this 
pattern closely. (See discussion of life tables, p. 97.)

We will use the following procedure: (a ) we will determine

fi(a, t) = n*/ a’ where m is the number at age a that there ’ n(a, t)

would be in response to the linear relation log j“^ y = aa[a =

u (t ) ]  acting alone; (b ) we will next determine fs(a, t) =

n2/ a> where n2 is the number resulting from a rise of mag-
ni(.a,
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nitude |3 [f3 = v (t)J  above 5 -a of log JU t).
1.(0)’ and (c )  we will

finally determine f8(a, t) n3(a, t) 
ifc (a ,t) ’ where ns is the number at

age a resulting from 
the extra slope y above 
age a0. Then the effect 
of the complete change 
in mortality rates will 
be (fi • f2 • fs) = f(a, t).

( a ) The effect of a a, 
the linear component 
of mortality change.

If the only change 
in mortality from year 
0 to year t were of the

la(t)
form lo*  1.(0) = u(t)a ,

the per cent age distribution in later years would be the same 
that would have prevailed with mortality unchanged. We will 
show this for year 1. The life table at the end of six months is 
related to the original table by an exponential factor:

la (l/2 )= la (0 )e "(1/2>*
if according to the former mortality a certain fraction S(a) 
would have survived from age a to a +1, according to the 
changed mortality, a fraction equal to S (a)eu<1/2) will survive. 
The fraction surviving at every age is multiplied by the same 
factor. Hence there would be eu<1/2) times as many persons at 
every age (including age zero, since parents are increased by 
the common factor, and fertility is unchanged), and thus the 
proportion at every age is left precisely as if mortality had re
mained constant. However, the number at every age is u ( l /2 )  
per cent greater than it would have been.
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After t years have passed, fi(a, t) will be given by:
£ ^ a  g[u( l /2)+u(3/2)  + . . . u ( t - l / 2 ) ]

or more exactly,
t
J u ( t )d t

(5 ) fi(a, t) = e °
If the population at time 0 were stable with an intrinsic rate 

of increase r, n(a, t) equal n(a, 0)ert and the number resulting 
from the linear component of changing mortality would be

/  J u ( t ) d t \

(6 ) ni(a, t) =\ert+° /  n (a ,0 )

(b ) The effect of 3 [ v ( t ) ] —the excess at age 5 of log
li(0)

over 5 • a.
The effect of a life table change of the form sketched in Figure 

14 is similar to that of a rise in fertility. Consider a cohort 
reaching age 5 at time t ( t ^  15). The cohort will be larger 
than it would have been, because of decreases in mortality. If 
the entire improvement in mortality under age 5 were concen
trated in the first day of life, we could determine f2(5, t) by 
finding out the increase in survivorship of the first day of life 
that had occurred five years before t —in short, we could assert:

(7 ) f2(5, t) = eT(t_5)
On the other hand, if 
the entire improve
ment in m orta lity  
under 5 were concen
trated in the last day 
before the fifth birth
day, we could assert:

✓  r /  p- \ Figure 14. The excess improvement in
( 8 )  12( 5 , t) =ev( childhood mortality (3 = v ( t ) .

>„(t)

>o<o>

.2

;r0  *v (t>

°<3 20 40  6 0  eo
AGE

OFFICE OF POPULATION NCSEANCN , PRINCETON UN IVERSITY

But if the improvement in mortality were spread out—as it 
usually is—from the first to the last day of the five-year span, 
then we can write

(9) f2(5, t) =  evu-r>



where a is a time lag somewhere intermediate between 0 and 5. 
Since, indeed, the improvement is typically more pronounced 
in the earlier ages of the interval, a lag of 3 or 3 1/2 years is a 
fair approximation to a in (9 ).

Once a cohort has reached age 5, changes in mortality below 
that age will not affect its size. The analogy between f2(a, t ) 
and the change in numbers occasioned by a rise in fertility is 
now apparent. There are two factors influencing f2(a, t) for 
a ^  5—the first is any change in the size of the cohort at birth, 
and the second is the changed probability it experienced in 
surviving to age 5. But f2(0, t )— the proportionate increase in 
a birth cohort— is determined by changes in the number of 
mothers, just as the number of mothers helped determine the 
birth cohort when fertility was changing. ( Cf. equation (2 )
above, p. 104.)

The end result is that if we designate e'(t) = h (t ) , we obtain 
an expression for f2(a, t) very much like that obtained for 
f(a, t) when fertility changes were analyzed.
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(10) f2(a ',t )  = h ( t - a '  + 2)

J [ h ( t -a  + 2) -  l]c (a )m (a )d a
o ------------------------ +1

/c (a )m (a )d a
ai

provided t is less than 35 or 40 years.

l»(t)(c ) The effect of y [w (t ) ] ,  the excess slope of log for 

a >  ao.

A straight line log la(t)
la(0) rising at an angle y beginning at

a = ao is equivalent to an increase by a factor of e7 in the proba
bility of surviving for one year at every age above a<>. As each 
cohort passes age a0, it acquires an incremental growth rate 
w (t). Thus at time t', any cohort at age a >  a<> will have gained 
in the following proportion:
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L
t '- ( a -a o )  w (t)dt

(11) f3(a, t ') = e (where the minimum lower limit
of the integral is zero)

The combined effect of the three components of mortality 
change is: f(a , t) = ( f i ) ( f 2) ( f 3)(a , t )

(12) f(a

h ( t ' -  a' + 2) <

/  f
' , t ' ) = U 0

|u(t)dt j

t ' - a '
S0 [h ( t' — a + 2) -  l]c (a )m (a )d a

02
/c (a )m (a )d a
ai

+ 1.

t-
S
et'-a +ao w ( t ) d t  where h (t) = eT(t)

The effect of a simultaneous change in fertility, described by

—-7 ~L̂ x=g (t ) ,  and in mortality, described by log m(a, 0) 0 7  -,7  ̂ I»(U)
= u(t)  • a + v ( t )  + w(t )  (a -  a0) is obtained by using the prod

uct of g (t )  for fertility and h (t + 2) for mortality in place of

simply h (t + 2) in (12). It is interesting to note that if

= h (t + 2 ) ,a  decline in fertility would be precisely offset by the 
decline in childhood mortality (in excess of the average mor
tality decline, so to speak). Under these circumstances, the 
only age distribution effects of changed vital rates would be a 
slight decline in the fraction under 5 because of the fact that 
child mortality improvement is spread over the interval 0-5 
rather than concentrated in the first few days of life, and pos
sibly a rise in the fraction at older ages, due to the above-aver
age improvements in mortality at these ages.

The transitory age distribution changes—like the changes in 
the stable distribution—are easier to picture with the help of 
an example. Our examples will by means of graphs show the 
effects of very sudden “ step-function”  changes in fertility and 
mortality.

Assume (as a first example) that there is a 10 per cent rise



Figure 15. Ten per cent “step-function”  
rise in fertility.

in fertility at t = 0, and 
that fertility remains 
at the new high levels 
from then on. (Fig. 15.)

Births will rise by 10 
per cent, and remain 
10 per cent above the 
formerly expected 
value until the number 
of mothers is affected. 

,T7U n'(a, t)
n(a, t)

will have the appear
ance shown in Figure 
16. But after t >  ai, 
n'(a, t) for the young
est ages will begin to 
reflect an increased 
number of mothers
(Fig. 17).

Later the increased 
daughters themselves 
swell the number of 
mothers, so that by the 
time t approaches u, 
the number of births 
will have been in
creased by perhaps 35 
per cent, as in Fig. 18. 

I f  we consider
c'(a, t) ,
c ^a (proportionate
age distributions in
stead of numbers at 
each age), the increase 
in the proportion

Effects of Changed Vital Rates on Age Composition 111

Figure 16. f(a , t) = n >a*t^, in response

to a ten per cent “ step-function” rise in 
fertility t years after the rise when t =  ai.

f(<3,i)

l.l 1!I1.0

4

11
\ ! » i

a = t-a, a=t
OFFICE OF POPULATION R E SE A R C H . P R IN C ET O N  U N IV ERSITY

A v u

Figure 17. f(a,  t) - 1̂ ~ —  ̂ in response 
n(a,  t ;

to a ten per cent “ step-function” rise in 
fertility t years after the rise when t  >  ai.
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formed by the younger 
age groups must be 
offset by a decrease in 
the proportion in the 
older ages. In short, 
the proportionate parts 
of the new age distri
bution must still add 
up to  o n e .  T h u s  
c ' (a , t )  
c(a, t) 
wholly

cannot lie

unity as does 

in Figure 18. 

when t = u,

above or on 
n'(a, t)
n(a, t) 
In fact, 
c '(a , t)

Figure 18. f(a , t) = n j * ’ *?, in response nta, t/
to a ten per cent ‘'step-function” rise in fer
tility t years after the rise as t approaches o>.

c (a , t )
very closely resembles 
the relation between 
two stable age distri
butions with a 10 per 
cent fertility difference.

In our second ex
ample, we will consider 
mortality improve
ments which take the 
form of a step function 
of time. If u ( t )—the 
linear component of 
mortality change— rises from 0 to .01 at t = 0 and remains at 
.01 from then on, the effect is simply to raise the growth rate

by 1 per cent. In other words, — ^  = e #u. (Fig. 19.)
n va, t )

If v ( t ) —the excess improvement in mortality under 5—in
creases so as to produce a sudden 10 per cent improvement in 
the probability of surviving to age 5, the effect is very similar

Figure 19. fi(a , t) in response to a one 
per cent increase in the probability of sur
viving at all ages 18 years after the change.
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Figure 20. f2(a, t) in response to a ten 
per cent increase in the probability of sur
viving to age 5, t years after the increase.

Figure 21. fs(a , t) in response to a sudden 
increase of three per cent in the probability 
of surviving at ages above a<>.

to that portrayed in Figures 16 through 18. The principal dif
ference is that the wave-front is no longer vertical. (Fig. 20.)

Lastly, if u ( t )—the excess improvement in mortality in the 
older ages— increases so as to produce a sudden increase in the

steepness of log l(a, t) 

l(a, 0)
for a >  a0, the effect is, of course, to cause

a rise in the numbers above a0. If the slope of log l(a, t) - ,I----- is sud
La. 0)

denly increased by .03, the effect t years later is shown in 
Figure 21.

The time pattern of changing rates used in these examples 
represents the sharpest possible sort of transient change. The 
examples show, in qualitative terms, that transitory effects on 
age distributions are in the same general direction as the even
tual effects on the stable age distribution. A rise in fertility 
produces an increase in the proportion in the younger age 
groups at the expense of the older; a proportionate increase at 
all ages in the probability of surviving affects only the growth 
rate; an extra increase in survivorship at the youngest ages has 
an effect much like a rise in fertility; an extra increase in sur
vivorship at the older ages tends to raise the fraction at these 
ages.

These conclusions are (we repeat) qualitative and inexact.
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The exact effect on a particular age depends on too many fac
tors to be described simply. However, one can say with every 
confidence of being correct that a lower course of fertility pro
duces an older population than would a higher course, all other 
factors being the same; and with fair confidence that most 
mortality improvements in the past have produced a younger 
population than would have resulted from unchanged mortal
ity, other factors the same. It seems clear, moreover, that 
further improvements in mortality in those areas currently 
having the lowest mortality risks will tend to produce an older 
population.
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